Inhibition of the nuclear export of poly(A)-containing mRNAs caused by the influenza A virus NS1 protein requires its effector domain. Here, we demonstrate that the NS1 effector domain functionally interacts with the cellular 30 kDa subunit of CPSF, an essential component of the 3' end processing machinery of cellular pre-mRNAs. In influenza virus-infected cells, the NS1 protein is physically associated with CPSF 30 kDa. Binding of the NS1 protein to the 30 kDa protein in vitro prevents CPSF binding to the RNA substrate and inhibits 3' end cleavage and polyadenylation of host pre-mRNAs. The NS1 protein also inhibits 3' end processing in vivo, and the uncleaved pre-mRNA remains in the nucleus. Via this novel regulation of pre-mRNA 3' end processing, the NS1 protein selectively inhibits the nuclear export of cellular, and not viral, mRNAs.
Through alternative polyadenylation, human mRNAs acquire longer or shorter 3' untranslated regions, the latter typically associated with higher transcript stability and increased protein production. To understand the dynamics of polyadenylation site usage, we performed transcriptome-wide mapping of both binding sites of 3' end processing factors CPSF-160, CPSF-100, CPSF-73, CPSF-30, Fip1, CstF-64, CstF-64τ, CF I(m)25, CF I(m)59, and CF I(m)68 and 3' end processing sites in HEK293 cells. We found that although binding sites of these factors generally cluster around the poly(A) sites most frequently used in cleavage, CstF-64/CstF-64τ and CFI(m) proteins have much higher positional specificity compared to CPSF components. Knockdown of CF I(m)68 induced a systematic use of proximal polyadenylation sites, indicating that changes in relative abundance of a single 3' end processing factor can modulate the length of 3' untranslated regions across the transcriptome and suggesting a mechanism behind the previously observed increase in tumor cell invasiveness upon CF I(m)68 knockdown.
Eukaryotic cells contain several unconventional poly(A) polymerases in addition to the canonical enzymes responsible for the synthesis of poly(A) tails of nuclear messenger RNA precursors. The yeast protein Trf4p has been implicated in a quality control pathway that leads to the polyadenylation and subsequent exosome-mediated degradation of hypomethylated initiator tRNAMet (tRNAi
Met). Here we show that Trf4p is the catalytic subunit of a new poly(A) polymerase complex that contains Air1p or Air2p as potential RNA-binding subunits, as well as the putative RNA helicase Mtr4p. Comparison of native tRNAi
Met with its in vitro transcribed unmodified counterpart revealed that the unmodified RNA was preferentially polyadenylated by affinity-purified Trf4 complex from yeast, as well as by complexes reconstituted from recombinant components. These results and additional experiments with other tRNA substrates suggested that the Trf4 complex can discriminate between native tRNAs and molecules that are incorrectly folded. Moreover, the polyadenylation activity of the Trf4 complex stimulated the degradation of unmodified tRNAi
Met by nuclear exosome fractions in vitro. Degradation was most efficient when coupled to the polyadenylation activity of the Trf4 complex, indicating that the poly(A) tails serve as signals for the recruitment of the exosome. This polyadenylation-mediated RNA surveillance resembles the role of polyadenylation in bacterial RNA turnover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.