The unitary Cayley graph $X_n$ has vertex set $Z_n=\{0,1, \ldots ,n-1\}$. Vertices $a, b$ are adjacent, if gcd$(a-b,n)=1$. For $X_n$ the chromatic number, the clique number, the independence number, the diameter and the vertex connectivity are determined. We decide on the perfectness of $X_n$ and show that all nonzero eigenvalues of $X_n$ are integers dividing the value $\varphi(n)$ of the Euler function.
Let $\Gamma$ be a finite, additive group, $S \subseteq \Gamma, 0\notin S, -S=\{-s: s\in S\}=S$. The undirected Cayley graph Cay$(\Gamma,S)$ has vertex set $\Gamma$ and edge set $\{\{a,b\}: a,b\in \Gamma$, $a-b \in S\}$. A graph is called integral, if all of its eigenvalues are integers. For an abelian group $\Gamma$ we show that Cay$(\Gamma,S)$ is integral, if $S$ belongs to the Boolean algebra $B(\Gamma)$ generated by the subgroups of $\Gamma$. The converse is proven for cyclic groups. A finite group $\Gamma$ is called Cayley integral, if every undirected Cayley graph over $\Gamma$ is integral. We determine all abelian Cayley integral groups.
It is shown that distance powers of an integral Cayley graph over an abelian group Γ are again integral Cayley graphs over Γ. Moreover, it is proved that distance matrices of integral Cayley graphs over abelian groups have integral spectrum.
An undirected graph is called integral, if all of its eigenvalues are integers. Let $\Gamma =Z_{m_1}\otimes \ldots \otimes Z_{m_r}$ be an abelian group represented as the direct product of cyclic groups $Z_{m_i}$ of order $m_i$ such that all greatest common divisors $\gcd(m_i,m_j)\leq 2$ for $i\neq j$. We prove that a Cayley graph $Cay(\Gamma,S)$ over $\Gamma$ is integral, if and only if $S\subseteq \Gamma$ belongs to the the Boolean algebra $B(\Gamma)$ generated by the subgroups of $\Gamma$. It is also shown that every $S\in B(\Gamma)$ can be characterized by greatest common divisors.
A gcd-graph is a Cayley graph over a finite abelian group defined by greatest common divisors. Such graphs are known to have integral spectrum. A non-complete extended psum, or NEPS in short, is well-known general graph product. We show that the class of gcd-graphs and the class of NEPS of complete graphs coincide. Thus, a relation between the algebraically defined Cayley graphs and the combinatorially defined NEPS of complete graphs is established. We use this link to show that gcd-graphs have a particularly simple eigenspace structure, to be precise, that every eigenspace of the adjacency matrix of a gcdgraph has a basis with entries −1, 0, 1 only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.