The results of an API‐sponsored pilot‐scale subsurface venting system study are presented. The purpose of this study was to evaluate the effectiveness of forced venting techniques in controlling and removing hydrocarbon vapors from a subsurface formation. Both qualitative and quantitative sampling and analytical procedures were developed to measure hydrocarbon vapors extracted from the soil. Vapor recovery and equivalent liquid product recovery rates were measured at each test cell evacuation rate. Two identical test cells were installed. Each cell contained 16 vapor monitoring probes spaced at distances from 4 to 44 feet from a vapor extraction (vacuum) well. Each cell was also configured with two air inlet wells to allow atmospheric air to enter the subsurface formation. The vapor monitoring probes were installed at three discrete elevations above the capillary zone. In situ vapor samples were obtained periodically from these probes to measure changes in vapor concentration and composition while extracting vapors from the vacuum well at three different flow rates (18.5 scfm, 22.5 scfm and 39.8 scfm). In situ vapor samples were analyzed using a portable gas chromatograph to quantify and speciate the vapors. Vacuum levels were also measured at each vapor sampling probe and at the vacuum well. The soil venting techniques evaluated during this study offer an alternative approach for controlling and eliminating spilled or leaked hydrocarbons from sand or gravel formations of high porosity and moderate permeability. These techniques may also be used to augment conventional liquid recovery methods. The data collected during this study will be useful in optimizing subsurface venting systems for removing and controlling hydrocarbon vapors in soil. Study results indicate pulsed venting techniques may offer a cost‐effective means of controlling or eliminating hydrocarbon vapors in soil.
1,3-Butadiene is one of the top air pollution risk drivers in the United States. The ambient air concentrations in Houston, TX are of particular interest because of the relatively large number of stationary industrial sources that report 1,3-butadiene emissions and the relatively large number of vehicle miles traveled every day on Houston roadways. Several Federal and State regulatory programs initiated over the last two decades regulate the amount of 1,3-butadiene emitted to the air from industrial, mobile, and area sources. Emissions reductions from industrial sources in Houston have also been achieved through voluntary agreements between individual facilities and the Texas Commission on Environmental Quality (TCEQ). The impact of these regulatory and voluntary initiatives on air quality has been measured by a network of 30 monitors stationed within the Houston area. Most of the area's monitors have measured reductions in annual average 1,3-butadiene levels in the range of 40-80%. The greatest decreases and statistically significant downward trends have been measured at the monitoring sites closest to industrial facilities.
As public awareness and concern about air quality grows, companies and researchers have begun to develop small, low-cost sensors to measure local air quality. These sensors have been used in citizen science projects, in distributed networks within cities, and in combination with public health studies on asthma and other air-quality-associated diseases. However, sensor long-term performance under different environmental conditions and pollutant levels is not fully understood. In addition, further evaluation is needed for other long-term performance trends such as performance among sensors of the same model, comparison between sensors from different companies and comparison of sensor data to federal equivalence or reference method (FEM/FRM) measurements. A 10-month evaluation of two popular particulate matter (PM) sensors, Dylos DC1100 and AirBeam, and a popular ozone (O 3 ) sensor, Aeroqual 500, was performed as part of this study. Data from these sensors were compared to each other and to FEM/FRM data and local meteorology. The study took place at the Houston Regional Monitoring (HRM) site 3, located between the Houston Ship Channel and Houston's urban center. PM sensor performance was found to vary in time, with multivariate analysis, binning of data by meteorological parameter, and machine learning techniques able to account for some but not all performance variations. PM type (i.e., size distribution, fiber-flake-spheroid shape and black-brownwhite color) likely played a role in the changing sensor performance. Triplicate individual Aeroqual O 3 sensors tracked reasonably well with the FEM data for most of the measurement period but had irregular periods of O 3 measurement offset. While the FEM data indicated 4 days where ozone levels were above the NAAQS, the Aeroqual ozone sensors indicated a substantially higher number of days, ranging from 9 to 16 for the three sensors.Implications: This paper evaluated the long-term performance of several commercial low-cost sensors (PM 2.5 and ozone) as compared to federal equivalence method (FEM) monitors under a range of meteorological and air quality conditions. PM 2.5 sensors performed well on low humidity days with winds indicative of sea salt or dust PM sources but had poor correlation with FEM data under other conditions. Two types of PM sensors were studied (Dylos 1100 and AirBeam) and data only correlated well between sensors of the same type. Sensor networks with multiple PM sensor types would not be as useful for comparative purposes as sensor networks of the same type. Relative humidity corrections alone did not increase sensor agreement with FEM to acceptable levels, specific information about PM sources and sensor response in the area measured is needed. Low-cost ozone sensors tested (Aeroqual) performed well but were biased high and overestimated days above ozone NAAQS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.