In vitro lipid adsorption varied greatly depending on the lens material for both polar and nonpolar lipids. Overall, there was less in vitro adsorption of lipid to the lotrafilcon A and B polymers than for any of the other silicone hydrogel polymers tested. The quantity of lipid adsorption by lotrafilcon polymers was similar to "conventional" hydrogel lenses.
Insoluble lipids serve vital functions in our bodies and interact with biomedical devices, e.g., the tear film on a contact lens. Over a period of time, these naturally occurring lipids form interfacial coatings that modify the wettability characteristics of these foreign synthetic surfaces. In this study, we examine the deposition and consequences of tear film lipids on silicone hydrogel (SiHy) contact lenses. We use bovine meibum, which is a complex mixture of waxy esters, cholesterol esters, and lipids that is secreted from the meibomian glands located on the upper and lower eyelids of mammals. For comparison, we study two commercially available model materials: dipalmitoylphosphatidylcholine (DPPC) and cholesterol. Upon deposition, we find that DPPC and meibum remain closer to the SiHy surface than cholesterol, which diffuses further into the porous SiHy matrix. In addition, we also monitor the fate of unstable thin liquid films that consequently rupture and dewet on these lipid-decorated surfaces. This dewetting provides valuable qualitative and quantitative information about the wetting characteristics of these SiHy substrates. We observe that decorating the SiHy surface with simple model lipids such as DPPC and cholesterol increases the hydrophilicity, which consequently inhibits dewetting, whereas meibum behaves conversely.
Cholesterol deposition in SiHy contact lenses seems to be lens polymer dependent. Enhanced-lotrafilcon A and enhanced-lotrafilcon B both sorbed the lowest amount of cholesterol compared with the other five types of SiHy lenses that were tested in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.