The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6‐m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centered near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky‐diode mixers with local oscillators derived from phase‐locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183‐ and 205‐GHz local oscillators, and quasi‐optical techniques inject these into the mixers. Six 15‐channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for “total power” measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65‐s limb scan. Instrument in‐orbit performance has been excellent, and all objectives are being met.
Jupiter-family comets (JFCs) are the evolutionary products of trans-Neptunian objects (TNOs) that evolve through the giant planet region as Centaurs and into the inner solar system. Through numerical orbital evolution calculations following a large number of TNO test particles that enter the Centaur population, we have identified a short-lived dynamical Gateway, a temporary low-eccentricity region exterior to Jupiter through which the majority of JFCs pass. We apply an observationally based size distribution function to the known Centaur population and obtain an estimated Gateway region population. We then apply an empirical fading law to the rate of incoming JFCs implied by the the Gateway region residence times. Our derived estimates are consistent with observed population numbers for the JFC and Gateway populations. Currently, the most notable occupant of the Gateway region is 29P/Schwassmann-Wachmann 1 (SW1), a highly active, regularly outbursting Centaur. SW1's present-day, very-loweccentricity orbit was established after a 1975 Jupiter conjunction and will persist until a 2038 Jupiter conjunction doubles its eccentricity and pushes its semi-major axis out to its current aphelion. Subsequent evolution will likely drive SW1's orbit out of the Gateway region, perhaps becoming one of the largest JFCs in recorded history. The JFC Gateway region coincides with a heliocentric distance range where the activity of observed cometary bodies increases significantly. SW1's activity may be typical of the early evolutionary processing experienced by most JFCs. Thus, the Gateway region, and its most notable occupant SW1, are critical to both the dynamical and physical transition between Centaurs and JFCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.