This project brings together two lines of researchóthe study of complex dynamic systems and the use of participatory simulations as a powerful way into systems modelingóboth of which can be enabled and advanced through emerging network technologies. The study of dynamic systems stands as a new form of literacy for all.. Participatory Simulations Activities can support new forms of classroom interaction and can serve to catalyze the engagement with dynamic systems modeling as a core feature of the education of all students. To accomplish these goals, we introduce a new architecture, HubNet. HubNet is an open client-server architecture, which enables many users at the "Nodes" (currently TI graphing calculators) to control the behavior of individual objects or agents and to view the aggregated results on a central computer known as the Hub. This network of nodes is integrated with a powerful suite of modeling, analysis and display tools that together give both the capacity to "fly' the system in intuitive mode, to reflect on the emergent result of their simulation and, also, to encode their strategies as rules which the system can then run independently. The HubNet system is being used in several middle and secondary classrooms. An illustrative example of classroom use is presented.
New theoretical, methodological, and design frameworks for engaging classroom learning are supported by the highly interactive and group-centered capabilities of a new generation of classroom-based networks. In our analyses, networked teaching and learning are organized relative to a dialectic of (a) seeing mathematical and scientific structures as fully situated in sociocultural contexts and (b) seeing mathematics as a way of structuring our understanding of and design for group-situated teaching and learning. An engagement with this dialectic is intended to open up new possibilities for understanding the relations between content and social activity in classrooms. Features are presented for what we call generative design in terms of the respective "sides" of the dialectic. Our approach to generative design centers on the notion that classrooms have multiple agents, interacting at various levels of participation, and looks to make the best possible use of the plurality of emergent ideas found in classrooms. We close with an examination of how this dialectic framework also can support constructive critique of both sides of the dialectic in terms of content and pedagogy.
Abstract:Technology-rich learning environments can accelerate and enhance core curriculum reform in science and mathematics by enabling more diverse students to learn more complex concepts with deeper understanding at a younger age. Unfortunately, today's technology research and development efforts result not in an richly integrated environment, but rather with a fragmentary collection of incompatible software application islands. In this article we ask: how can the best innovations in technology-rich learning integrate and scale up to the level of major curricular reforms? A potential solution is component software architecture, which provides open standards that enable plug and play composition of software tools produced by many different projects and vendors. We describe an exploratory effort in which four research groups produced software components for the mathematics of motion. The resulting prototypes support (a) integration of the separately produced tools into the same windows, files, and interfaces, (b) dynamic linking across multiple representations and (c) drag and drop activity authoring without programming. We also summarize an extended Internet discussion which raised critical issues regarding the future of component software architecture in education, and speculate on the future need for components for devices other than the desktop computer and for virtual communities that coordinate design teams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.