In the past two decades, a great deal of information on the role of endophytic microorganisms in nature has been collected. The capability of colonizing internal host tissues has made endophytes valuable for agriculture as a tool to improve crop performance. In this review, we addressed the major topics concerning the control of insects-pests by endophytic microorganisms. Several examples of insect control are described, notably those involving the interactions between fungi and grazing grasses from temperate countries. The mechanisms by which endophytic fungi control insect attacks are listed and include toxin production as well as the influence of these compounds on plant and livestock and how their production may be affected by genetic and environmental conditions. The importance of endophytic entomopathogenic fungi for insect control is also addressed. As the literature has shown, there is a lack of information on endophytes from tropical hosts, which are more severely affected by pests and diseases. The natural and biological control of pests and diseases affecting cultivated plants has gained much attention in the past decades as a way of reducing the use of chemical products in agriculture. Biological control has been frequently used in Brazil, supported by the development of basic and applied research on this field not only in our country but also in South America as it can be found in several reviews (Lecuona, 1996;Alves, 1998;Melo and Azevedo, 1998). In fact, by having vast agriculturable areas and most of its territory in the tropical region, Brazil and all Latin America, show their agriculture severely affected by agricultural pests. The use of agrochemicals, although decreasing the attack of insects and phytopathogenic microorganisms, still represents a high risk to field workers and consumers. In addition, their use is, in certain cases, economically unviable. The control of pests and diseases by means of biological processes i. e., use of entomopathogenic microorganisms or those that inhibit/antagonise other microorganisms pathogenic to plants, is an alternative that may contribute to reduce or eliminate the use of chemical products in agriculture.
Citrus variegated chlorosis (CVC) is caused by Xylella fastidiosa, a phytopathogenic bacterium that can infect all Citrus sinensis cultivars. The endophytic bacterial communities of healthy, resistant, and CVC-affected citrus plants were studied by using cultivation as well as cultivation-independent techniques. The endophytic communities were assessed in surface-disinfected citrus branches by plating and denaturing gradient gel electrophoresis (DGGE). Dominant isolates were characterized by fatty-acid methyl ester analysis as Bacillus pumilus, Curtobacterium flaccumfaciens, Enterobacter cloacae, Methylobacterium spp. (including Methylobacterium extorquens, M. fujisawaense, M. mesophilicum, M. radiotolerans, and M. zatmanii), Nocardia sp., Pantoea agglomerans, and Xanthomonas campestris. We observed a relationship between CVC symptoms and the frequency of isolation of species of Methylobacterium, the genus that we most frequently isolated from symptomatic plants. In contrast, we isolated C. flaccumfaciens significantly more frequently from asymptomatic plants than from those with symptoms of CVC while P. agglomerans was frequently isolated from tangerine (Citrus reticulata) and sweet-orange (C. sinensis) plants, irrespective of whether the plants were symptomatic or asymptomatic or showed symptoms of CVC. DGGE analysis of 16S rRNA gene fragments amplified from total plant DNA resulted in several bands that matched those from the bacterial isolates, indicating that DGGE profiles can be used to detect some endophytic bacteria of citrus plants. However, some bands had no match with any isolate, suggesting the occurrence of other, nonculturable or as yet uncultured, endophytic bacteria. A specific band with a high G؉C ratio was observed only in asymptomatic plants. The higher frequency of C. flaccumfaciens in asymptomatic plants suggests a role for this organism in the resistance of plants to CVC.
The population structure of Guignardia citricarpa sensu lato (anamorph: Phyllosticta citricarpa), a fungus of which strains pathogenic to citrus are subject to phytosanitary legislation in the European Union and the United States, was investigated. Internal transcribed spacer sequences revealed two phylogenetically distinct groups in G. citricarpa. This distinction was supported by amplified fragment length polymorphism analysis that also supported the exclusion of two isolates that had apparently been misclassified as G. citricarpa. On cherry decoction agar, but not on other media, growth rates of group I isolates were lower than those of group II isolates. Conidial dimensions were similar, but group I isolates formed conidia with barely visible mucoid sheaths, whereas those of group II formed conidia with thick sheaths. Cultures of isolates belonging to group I produced rare infertile perithecia, whereas fertile perithecia were formed by most isolates of group II. Colonies of isolates belonging to group I were less dark than those of group II, with a wider translucent outer zone and a lobate rather than entire margin. On oatmeal agar, exclusively group I isolates formed a yellow pigment. Group I harbored strains from citrus fruits with classical black spot lesions (1 to 10 mm in diameter) usually containing pycnidia. Group II harbored endophytic strains from a wide range of host species, as well as strains from symptomless citrus fruits or fruits with minute spots (<2-mm diameter) without pycnidia. These observations support the historic distinction between slowly growing pathogenic isolates and morphologically similar fast-growing, nonpathogenic isolates of G. citricarpa. The latter proved to belong to G. mangiferae (P. capitalensis), a ubiquitous endophyte of woody plants with numerous probable synonyms including G. endophyllicola, G. psidii, P. anacardiacearum, and P. theacearum. G. mangiferae occurs in the European Union and the United States on many host species including citrus, and does not cause symptoms of citrus black spot, justifying its exclusion from quarantine measures.
Aims: To isolate endophytic bacteria and Xylella fastidiosa and also to evaluate whether the bacterial endophyte community contributes to citrus-variegated chlorosis (CVC) status in sweet orange (Citrus sinensis [L.] Osbeck cv. Pera). Methods and Results: The presence of Xylella fastidiosa and the population diversity of culturable endophytic bacteria in the leaves and branches of healthy, CVC-asymptomatic and CVC-symptomatic sweet orange plants and in tangerine (Citrus reticulata cv. Blanco) plants were assessed, and the in vitro interaction between endophytic bacteria and X. fastidiosa was investigated. There were significant differences in endophyte incidence between leaves and branches, and among healthy, CVC-asymptomatic and CVC-symptomatic plants. Bacteria identified as belonging to the genus Methylobacterium were isolated only from branches, mainly from those sampled from healthy and diseased plants, from which were also isolated X. fastidiosa. Conclusions: The in vitro interaction experiments indicated that the growth of X. fastidiosa was stimulated by endophytic Methylobacterium extorquens and inhibited by endophytic Curtobacterium flaccumfaciens. Significance and Impact of the Study: This work provides the first evidence of an interaction between citrus endophytic bacteria and X. fastidiosa and suggests a promising approach that can be used to better understand CVC disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.