Local structure characterization with the bond-orientational order parameters q 4 , q 6 ,. . . introduced by Steinhardt et al. has become a standard tool in condensed matter physics, with applications including glass, jamming, melting or crystallization transitions and cluster formation. Here we discuss two fundamental flaws in the definition of these parameters that significantly affect their interpretation for studies of disordered systems, and offer a remedy. First, the definition of the bond-orientational order parameters considers the geometrical arrangement of a set of neighboring spheres NN(p) around a given central particle p; we show that procedure to select the spheres constituting the neighborhood NN(p) can have greater influence on both the numerical values and qualitative trend of q l than a change of the physical parameters, such as packing fraction. Second, the discrete nature of neighborhood implies that NN(p) is not a continuous function of the particle coordinates; this discontinuity, inherited by q l , leads to a lack of robustness of the q l as structure metrics. Both issues can be avoided by a morphometric approach leading to the robust Minkowski structure metrics q ′ l . These q ′ l are of a similar mathematical form as the conventional bond-orientational order parameters and are mathematically equivalent to the recently introduced Minkowski tensors [Europhys. Lett. 90, 34001 (2010); Phys. Rev. E. 85, 030301 (2012)].
Predicting physical properties of materials with spatially complex structures is one of the most challenging problems in material science. One key to a better understanding of such materials is the geometric characterization of their spatial structure. Minkowski tensors are tensorial shape indices that allow quantitative characterization of the anisotropy of complex materials and are particularly well suited for developing structure-property relationships for tensor-valued or orientation-dependent physical properties. They are fundamental shape indices, in some sense being the simplest generalization of the concepts of volume, surface and integral curvatures to tensor-valued quantities. Minkowski tensors are based on a solid mathematical foundation provided by integral and stochastic geometry, and are endowed with strong robustness and completeness theorems. The versatile definition of Minkowski tensors applies widely to different types of morphologies, including ordered and disordered structures. Fast linear-time algorithms are available for their computation. This article provides a practical overview of the different uses of Minkowski tensors to extract quantitative physically-relevant spatial structure information from experimental and simulated data, both in 2D and 3D. Applications are presented that quantify (a) alignment of co-polymer films by an electric field imaged by surface force microscopy; (b) local cell anisotropy of spherical bead pack models for granular matter and of closed-cell liquid foam models; (c) surface orientation in open-cell solid foams studied by X-ray tomography; and (d) defect densities and locations in molecular dynamics simulations of crystalline copper.
This paper describes the theoretical foundation of and explicit algorithms for a novel approach to morphology and anisotropy analysis of complex spatial structure using tensor-valued Minkowski functionals, the socalled Minkowski tensors. Minkowski tensors are generalizations of the wellknown scalar Minkowski functionals and are explicitly sensitive to anisotropic aspects of morphology, relevant for example for elastic moduli or permeability of microstructured materials. Here we derive explicit linear-time algorithms to compute these tensorial measures for three-dimensional shapes. These apply to representations of any object that can be represented by a triangulation of its bounding surface; their application is illustrated for the polyhedral Voronoi cellular complexes of jammed sphere configurations and for triangulations of a biopolymer fibre network obtained by confocal microscopy. The paper further bridges the substantial notational and conceptual gap between the different but equivalent approaches to scalar or tensorial Minkowski functionals in mathematics and in physics, hence making the mathematical measure theoretic formalism more readily accessible for future application in the physical sciences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.