Messenger RNAs coding for growth factors and receptor tyrosine kinases were measured by quantitative competitive and by semi-quantitative reverse-transcription polymerase chain reaction in whole and dissected chick inner ears. The fibroblast growth factor (FGF) receptor 1 chick embryonic kinase (CEK) 1 was expressed in all structures examined (otocyst, hatchling whole cochlea, cochlear nerve ganglion, and cochlear and vestibular sensory epithelia),although slightly more heavily in the otocyst. The related fibroblast growthfactor receptors CEK 2 and 3 were preferentially expressed in the nerve ganglion and in the vestibular sensory epithelium, respectively. FGF1 mRNA was low in early development, increasing to mature levels at around embryonic age 11 days, while FGF2 mRNA was expressed at constant levels at all ages. In response to ototoxic damage, FGF1 mRNA levels were increased in the early damaged cochlear sensory epithelium. Immunohistochemistry for CEK1 showed that normal hair cells expressed the receptor heavily on the hair cellstereocilia, while with early damage, CEK1 came to be expressed heavily on the apical surfaces of the supporting cells. In normal chicks, the CEK4 andCEK8 eph-class receptor tyrosine kinases were expressed relatively heavily by the cochlear nerve ganglion, and CEK10 was expressed relatively heavily by the cochlear hair cell sensory epithelium. The results suggest that the FGF system may be involved in the response of the cochlear epithelium to ototoxic damage. The eph-class receptor tyrosine kinase CEK10 may be involved in cell interactions in the cochlear sensory epithelium, while CEK4 and CEK8 may play a role in the cochlear innervation.
The distributions of the Eph-class receptors EphA4 and EphB1, and their ligands ephrin-A2, ephrin-B1, and ephrin-B2, were analysed by immunostaining in the mouse inner ear. Complementary patterns of EphA4 and its potential ligand ephrin-A2 were found, with ephrin-A2 in many of the structures lining the cochlear duct and within the cochlear nerve cells, and EphA4 in the deeper structures underlying the cochlear duct and in the cells lining the nerve pathway. EphB1 and its potential ligands ephrin-B1 and ephrin-B2 showed a segregated layered expression in the lateral wall of the cochlear duct (the external sulcus), which together with EphA4 expressed in the area, form a four-layered structure with an alternating pattern of receptors and ligands in the different layers. This arrangement gives the potential for different bidirectional Eph-mediated interactions between each of the layers. The results suggest that the Eph system in the cochlea may have a role in maintaining cell segregation during phases of cochlear development.
The cerebral caudodorsal cells of the pulmonate snail Lymnaea stagnalis control egg laying and egg laying behavior by releasing various peptides derived from two precursors. The biosynthesis, storage, intracellular breakdown and release of three caudodorsal cell peptides were studied by means of immuno-electron microscopy using antisera raised to fragments of these peptides: (1) Caudodorsal Cell Hormone-I (CDCH-I; derived from precursor I), (2) Caudodorsal Cell Hormone-II (CDCH-II; from precursor II), and (3) alpha-Caudodorsal Cell Peptide (alpha CDCP; from both precursors). After affinity purification of the antisera, the specificity of the sera was confirmed with dotting immunobinding assays. From the ultrastructural immunocytochemical data it has been concluded that the precursor molecules are cleaved at the level of the Golgi apparatus after which the C-terminal parts (containing alpha CDCP) and N-terminal parts (containing DCDH-I or CDCH-II) are sorted and preferentially packaged into large electron-dense granules (MD 150 nm), respectively. Very probably, the content of the large electron-dense granules is degraded within the cell body. The immunoreactivity of the secretory granules increases during discharge from the Golgi apparatus, indicating further processing. At least a portion of the secretory granules contains all three peptides, as shown by double and triple immunopositive stainings whereas other granules appear to contain only one or two of these peptides. The caudodorsal cells release multiple peptides via exocytosis from neurohemal axon terminals into the hemolymph and from blindly ending axon collaterals into the intercellular space of the cerebral commissure (nonsynaptic release).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.