Having accurate left ventricle (LV) segmentations across a cardiac cycle provides useful quantitative (e.g. ejection fraction) and qualitative information for diagnosis of certain heart conditions. Existing LV segmentation techniques are founded mostly upon algorithms for segmenting static images. In order to exploit the dynamic structure of the heart in a principled manner, we approach the problem of LV segmentation as a recursive estimation problem. In our framework, LV boundaries constitute the dynamic system state to be estimated, and a sequence of observed cardiac images constitute the data. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past segmentations. This requires a dynamical system model of the LV, which we propose to learn from training data through an information-theoretic approach. To incorporate the learned dynamic model into our segmentation framework and obtain predictions, we use ideas from particle filtering. Our framework uses a curve evolution method to combine such predictions with the observed images to estimate the LV boundaries at each time. We demonstrate the effectiveness of the proposed approach on a large set of cardiac images. We observe that our approach provides more accurate segmentations than those from static image segmentation techniques, especially when the observed data are of limited quality.
The timely and accurate identification of adverse drug reactions (ADRs) following drug approval is a persistent and serious public health challenge. Aggregated data drawn from anonymized logs of Web searchers has been shown to be a useful source of evidence for detecting ADRs. However, prior studies have been based on the analysis of established ADRs, the existence of which may already be known publically. Awareness of these ADRs can inject existing knowledge about the known ADRs into online content and online behavior, and thus raise questions about the ability of the behavioral log-based methods to detect new ADRs. In contrast to previous studies, we investigate the use of search logs for the early detection of known ADRs. We use a large set of recently labeled ADRs and negative controls to evaluate the ability of search logs to accurately detect ADRs in advance of their publication. We leverage the Internet Archive to estimate when evidence of an ADR first appeared in the public domain and adjust the index date in a backdated analysis. Our results demonstrate how search logs can be used to detect new ADRs, the central challenge in pharmacovigilance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.