Movie S1Correction: In table S1, the displacement at station SNDL was reported erroneously. The correct displacement is: east, 0.047 ±0.002 m; north, -0.223 ±0.003 m; vertical, 0.003 ±0.003 m. The PDF has been corrected.
The Geodesy Advancing Geosciences and EarthScope (GAGE) Facility Global Positioning System (GPS) Data Analysis Centers produce position time series, velocities, and other parameters for approximately 2000 continuously operating GPS receivers spanning a quadrant of Earth's surface encompassing the high Arctic, North America, and Caribbean. The purpose of this review is to document the methodology for generating station positions and their evolution over time and to describe the requisite trade‐offs involved with combination of results. GAGE GPS analysis involves formal merging within a Kalman filter of two independent, loosely constrained solutions: one is based on precise point positioning produced with the GIPSY/OASIS software at Central Washington University and the other is a network solution based on phase and range double‐differencing produced with the GAMIT software at New Mexico Institute of Mining and Technology. The primary products generated are the position time series that show motions relative to a North America reference frame and secular motions of the stations represented in the velocity field. The position time series themselves contain a multitude of signals in addition to the secular motions. Coseismic and postseismic signals, seasonal signals from hydrology, and transient events, some understood and others not yet fully explained, are all evident in the time series and ready for further analysis and interpretation. We explore the impact of analysis assumptions on the reference frame realization and on the final solutions, and we compare within the GAGE solutions and with others.
Refinements to GPS analyses in which we factor geodetic time series to better estimate both reference frames and transient deformation resolve 34 slow slip events located throughout the Cascadia subduction zone from 1997 through 2005. Timing of transient onset is determined with wavelet transformation of geodetic time series. Thirty continuous stations are included in this study, ranging from northern California to southwestern British Columbia. Our improvements in analysis better resolve the largest creep events and also identify many smaller events. At 48.5°N latitude, a 14‐month average recurrence interval has been observed over eight events since 1997. Farther north along Vancouver Island a host of smaller events with a distinct 14‐month periodicity also occurs. In southern Washington State, some of the largest transient displacements are observed but lack any obvious periodicity in their recurrence. Along central Oregon, an 18‐month recurrence is evident, while in northern California an 11‐month periodicity continues through 2005. We invert GPS offsets of the 12 best recorded events for thrust slip along the plate interface using a cross‐validation scheme to derive optimal smoothing parameters. These 12 events have equivalent moment magnitudes between 6.3 and 6.8 and have 2–3 cm of slip. Unlike other subduction zones, no long‐duration events are observed, and cumulative surface deformation is consistently less than 0.6 cm. The many newly resolved smaller transient events in Cascadia show that slow slip events occur frequently with GPS best capturing only the largest events. It is likely that slow slip events occur more frequently at levels not detectable with GPS.
GPS data reveal that the Brahmaputra Valley has broken from the Indian Plate and rotates clockwise relative to India about a point a few hundred kilometers west of the Shillong Plateau. The GPS velocity vectors define two distinct blocks separated by the Kopili fault upon which 2-3 mm/yr of dextral slip is observed: the Shillong block between longitudes 89 and 93°E rotating clockwise at 1.15°/Myr and the Assam block from 93.5°E to 97°E rotating at ≈1.13°/Myr. These two blocks are more than 120 km wide in a north-south sense, but they extend locally a similar distance beneath the Himalaya and Tibet. A result of these rotations is that convergence across the Himalaya east of Sikkim decreases in velocity eastward from 18 to ≈12 mm/yr and convergence between the Shillong Plateau and Bangladesh across the Dauki fault increases from 3 mm/yr in the west to >8 mm/yr in the east. This fast convergence rate is inconsistent with inferred geological uplift rates on the plateau (if a 45°N dip is assumed for the Dauki fault) unless clockwise rotation of the Shillong block has increased substantially in the past 4-8 Myr. Such acceleration is consistent with the reported recent slowing in the convergence rate across the Bhutan Himalaya. The current slip potential near Bhutan, based on present-day convergence rates and assuming no great earthquake since 1713 A.D., is now~5.4 m, similar to the slip reported from alluvial terraces that offsets across the Main Himalayan Thrust and sufficient to sustain a M w ≥ 8.0 earthquake in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.