We introduce a "water retention" model for liquids captured on a random surface with open boundaries and investigate the model for both continuous and discrete surface heights 0,1,…,n-1 on a square lattice with a square boundary. The model is found to have several intriguing features, including a nonmonotonic dependence of the retention on the number of levels: for many n, the retention is counterintuitively greater than that of an (n+1)-level system. The behavior is explained using percolation theory, by mapping it to a 2-level system with variable probability. Results in one dimension are also found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.