The distribution of NADPH diaphorase (NADPH-d)/nitric oxide synthase (NOS) neurons was evaluated during the postnatal development of the primary somatosensory cortex (SI) of the rat. Both cell counts and area measurements of barrel fields were carried out throughout cortical maturation. In addition, NADPH-d and cytochrome oxidase (CO) activities were also compared in both coronal and tangential sections of rat SI between postnatal days (P) 10 and 90. Throughout this period, the neuropil distributions of both enzymes presented a remarkable similarity and have not changed noticeably. Their distribution pattern show the PMBSF as a two-compartmented structure, displaying a highly reactive region (barrel hollows) flanked by less reactive regions (barrel septa). The number of NADPH-d neurons increased significantly in the barrel fields between P10 and P23, with peak at P23. The dendritic arborization of NADPH-d neurons became more elaborated during barrel development. In all ages evaluated, the number of NADPH-d cells was always higher in septa than in the barrel hollows. Both high neuropil reactivity and differential distribution of NADPH-d neurons during SI development suggest a role for nitric oxide throughout barrel field maturation.
h i g h l i g h t s• Chronic stress impairs the development of the adolescent brain.• Chronic stress delays the maturation of extracellular structures called perineuronal nets, which stabilize synaptic contacts on inhibitory neurons, and prefrontal cortex-associated behavior.• These negative effects of chronic stress on the prefrontal cortex can theoretically occur in humans. Critical periods of plasticity (CPPs) are defined by developmental intervals wherein neuronal circuits are most susceptible to environmental influences. The CPP of the prefrontal cortex (PFC), which controls executive functions, extends up to early adulthood and, like other cortical areas, reflects the maturation of perineuronal nets (PNNs) surrounding the cell bodies of specialized inhibitory interneurons. The aim of the present work was to evaluate the effect of chronic stress on both structure and function of the adolescent's rat PFC. We subjected P28 rats to stressful situations for 7, 15 and 35 days and evaluated the spatial distribution of histochemically-labeled PNNs in both the Medial Prefrontal Cortex (MPFC) and the Orbitofrontal Cortex (OFC) and PFC-associated behavior as well. Chronic stress affects PFC development, slowing PNN maturation in both the (MPFC) and (OFC) while negatively affecting functions associated with these areas. We speculate upon the risks of prolonged exposure to stressful environments in human adolescents and the possibility of stunted development of executive functions.
The morphology of horizontal cells was studied in the retina of dichromatic capuchin monkeys, Cebus apella. The cells were labeled with the carbocyanine dye, 1,1',dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), and the labeling was then photoconverted to a stable product by using a diaminobenzidine reaction. The sizes of cell body, dendritic field, and axon terminal, as well as the number of dendritic clusters and cone convergence, were measured at increasing distance from the fovea. Three distinct morphological classes of horizontal cells were identified. Their dendritic and axonal morphology resembles those of H1, H2, and H3 cells described in trichromatic primates. The size of the cell bodies, dendritic fields, and axon terminals of all cell classes increases towards retinal periphery. H3 cells have larger dendritic fields and more dendritic clusters than H1 cells. All labeled horizontal cells located in selected patches of retina were further analyzed to quantify the differences between H1 and H3 cells. H1 cells have smaller dendritic field area, smaller total length of primary dendrites, more dendritic branching points, and larger fractal dimension than H3 cells. We have distinguished H1 and H3 cells based solely in morphological criteria. Their physiology should be further analyzed with detail, but their presence in both dichromatic and trichromatic primates suggests that neither of them have a specialized role in the red-green color opponent channel of color vision.
The morphology of horizontal cells was studied in the retina of dichromatic capuchin monkeys, Cebus apella. The cells were labeled with the carbocyanine dye, 1,1',dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), and the labeling was then photoconverted to a stable product by using a diaminobenzidine reaction. The sizes of cell body, dendritic field, and axon terminal, as well as the number of dendritic clusters and cone convergence, were measured at increasing distance from the fovea. Three distinct morphological classes of horizontal cells were identified. Their dendritic and axonal morphology resembles those of H1, H2, and H3 cells described in trichromatic primates. The size of the cell bodies, dendritic fields, and axon terminals of all cell classes increases towards retinal periphery. H3 cells have larger dendritic fields and more dendritic clusters than H1 cells. All labeled horizontal cells located in selected patches of retina were further analyzed to quantify the differences between H1 and H3 cells. H1 cells have smaller dendritic field area, smaller total length of primary dendrites, more dendritic branching points, and larger fractal dimension than H3 cells. We have distinguished H1 and H3 cells based solely in morphological criteria. Their physiology should be further analyzed with detail, but their presence in both dichromatic and trichromatic primates suggests that neither of them have a specialized role in the red-green color opponent channel of color vision.
Handedness is one of the most recognized lateralized behavior in humans. Usually, it is associated with manual superiority regarding performance proficiency. For instance, more than 90% of the human population is considered more skilled with the right hand, which is controlled by the left hemisphere, than with the left. However, during the performance of bimanual tasks, the two hands usually assume asymmetric roles, with one hand acting on objects while the other provides support, stabilizing the object. Traditionally, the role of the two hands is viewed as fixed. However, several studies support an alternate view with flexible assignments for the two hands depending on the task. The supporting role of the hand depends on a closed loop pathway based on proprioceptive inputs from the periphery. The circuit’s efferent arm courses through the dorsal corticospinal tract (dCST) in rodents and terminate on spinal cord interneurons which modulate the excitability of motoneurons in the ventral horn. In the present work, we developed an experimental model of unilateral lesion targeting the cervical dCST with microinjections of the vasoconstrictor endothelin-1 (ET-1) to evaluate the degree of flexibility of forelimb assignment during a food manipulation task. Our results show that just 3 days after unilateral corticospinal tract (CST) injury in the cervical region, rats display severe motor impairment of the ipsilateral forepaw together with a remarkable reversal of motor assignment between the forelimbs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.