This paper presents a review on signal analysis method for feature extraction of electroencephalogram (EEG) signal. It is an important aspect in signal processing as the result obtained will be used for signal classification. A good technique for feature extraction is necessary in order to achieve robust classification of signal. Considering several techniques have been implemented for extracting features in EEG signal, we only highlight the most commonly used for schizophrenia.The techniques are Hilbert-Huang transform, Principal Component Analysis, Independent Component Analysis and Local Discriminant Bases. Despite of their drawbacks, they can be applied which depends on the aim of a research, parameters and the data collected. Nevertheless, these techniques can be modified so that the new algorithm can overcome the shortcomings of original algorithm or algorithm beforehand. The modified Local Discriminant Bases algorithm is introduced in the present paper as another powerful adaptive feature extraction technique for EEG signal which is not reported elsewhere in investigating schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.