Abstract:Face spoofing is considered to be one of the prominent threats to face recognition systems. However, in order to improve the security measures of such biometric systems against deliberate spoof attacks, liveness detection has received significant recent attention from researchers. For this purpose, analysis of facial skin texture properties becomes more popular because of its limited resource requirement and lower processing cost. The traditional method of skin analysis for liveness detection was to use Local Binary Pattern (LBP) and its variants. LBP descriptors are effective, but they may exhibit certain limitations in near uniform patterns. Thus, in this paper, we demonstrate the effectiveness of Local Ternary Pattern (LTP) as an alternative to LBP. In addition, we adopted Dynamic Local Ternary Pattern (DLTP), which eliminates the manual threshold setting in LTP by using Weber's law. The proposed method was tested rigorously on four facial spoof databases: three are public domain databases and the other is the Universiti Putra Malaysia (UPM) face spoof database, which was compiled through this study. The results obtained from the proposed DLTP texture descriptor attained optimum accuracy and clearly outperformed the reported LBP and LTP texture descriptors.
Data protection from malicious attacks and misuse has become a crucial issue. Various types of data, including images, videos, audio and text documents, have given cause for the development of different methods for their protection. Cryptography, digital signatures and steganography are the most well known technologies used to protect data. During the last decade, digital watermarking technology has also been utilized as an alternative to prevent media forgery and tampering or falsification to ensure both copyright and authentication. Much work has been done to protect images, videos and audio but only a few algorithms have been considered for text document protection with digital watermarking. However, our survey observed that available text watermarking algorithms are neither robust nor imperceptible and as such remain unsecured methods of protection. Hence, research to improve the performance of text watermarking algorithms is required. This paper reviews current watermarking algorithms for text documents and categorizes text watermarking methods based on the way the text was treated during the watermarking process. It also discusses merits and demerits of available methods as well as recent proposed methods for evaluating text watermarking systems and the need for further research on digital text watermarking.
The non-stationary and multi-frequency nature of biomedical signal activities makes the use of time-frequency distributions (TFDs) for analysis inevitable. Time-frequency analysis provides simultaneous interpretations in both time and frequency domain enabling comprehensive explanation, presentation and interpretation of electrocardiogram (ECG) signals. The diversity of TFDs and specific properties for each type show the need to determine the best TFD for ECG analysis. In this study, a performance evaluation of five TFDs in term of ECG abnormality detection is presented. The detection criteria based on extracted features from most important ECG signal components (QRS) to detect normal and abnormal cases. This is achieved by estimating its energy concentration magnitude using the TFDs. The TFDs analyse ECG signals in one-minute interval instead of conventional time domain approach that analyses based on beat or frame containing several beats. The MIT-BIH normal sinus rhythm ECG database total records of 18 long-term ECG sampled at 128 Hz have been analysed. The tested TFDs include Dual-Tree Wavelet Transform, Spectrogram, Pseudo Wigner-Ville, Choi-Williams, and Born-Jordan. Each record is divided into one-minute slots, which is not considered previously, and analysed. The sample periods (slots) are randomly selected ten minutes interval for each record. This result with 99.44% detection accuracy for 15,735 ECG beats shows that Choi-Williams distribution is most reliable to be used for heart problem detection especially in automated systems that provide continuous monitoring for long time duration.
In this paper, we proposed a method for feature extraction in online signature verification. We first used signature coordinate points and pen pressure of all signatures, which are available in the SIGMA database. Then, Pearson correlation coefficients were selected for feature extraction. The obtained features were used in back-propagation neural network for verification. The results indicate an accuracy of 82.42%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.