Focal adhesion (FA) assembly, mediated by integrin activation, responds to matrix stiffness; however, the underlying mechanisms are unclear. Here, we showed that β1 integrin and caveolin-1 (Cav1) levels were decreased with declining matrix stiffness. Soft matrix selectively downregulated β1 integrin by endocytosis and subsequent lysosomal degradation. Disruption of lipid rafts with methyl-β-cyclodextrin or nystatin, or knockdown of Cav1 by siRNA decreased cell spreading, FA assembly, and β1 integrin protein levels in cells cultured on stiff matrix. Overexpression of Cav1, particularly the phospho-mimetic mutant Cav1-Y14D, averted soft matrix-induced decreases in β1 integrin protein levels, cell spreading, and FA assembly in NMuMG cells. Interestingly, overexpression of an auto-clustering β1 integrin hindered soft matrix-induced reduction of Cav1 and cell spreading, which suggests a reciprocal regulation between β1 integrin and Cav1. Finally, co-expression of this auto-clustering β1 integrin and Cav1-Y14D synergistically enhanced cell spreading, and FA assembly in HEK293T cells cultured on either stiff ( > G Pa) or soft (0.2 kPa) matrices. Collectively, these results suggest that matrix stiffness governs the expression of β1 integrin and Cav1, which reciprocally control each other, and subsequently determine FA assembly and turnover.
To explore whether matrix stiffness affects cell differentiation, proliferation, and transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) in primary cultures of mouse proximal tubular epithelial cells (mPTECs), we used a soft matrix made from monomeric collagen type I-coated polyacrylamide gel or matrigel (MG). Both kinds of soft matrix benefited primary mPTECs to retain tubular-like morphology with differentiation and growth arrest and to evade TGF-β1-induced EMT. However, the potent effect of MG on mPTEC differentiation was suppressed by glutaraldehyde-induced cross-linking and subsequently stiffening MG or by an increasing ratio of collagen in the soft mixed gel. Culture media supplemented with MG also helped mPTECs to retain tubular-like morphology and a differentiated phenotype on stiff culture dishes as soft MG did. We further found that the protein level and activity of ERK were scaled with the matrix stiffness. U-0126, a MEK inhibitor, abolished the stiff matrix-induced dedifferentiation and proliferation. These data suggest that the ERK signaling pathway plays a vital role in matrix stiffness-regulated cell growth and differentiation. Taken together, both compliant property and specific MG signals from the matrix are required for the regulation of epithelial differentiation and proliferation. This study provides a basic understanding of how physical and chemical cues derived from the extracellular matrix regulate the physiological function of proximal tubules and the pathological development of renal fibrosis.
The proliferation of mouse proximal tubular epithelial cells in ex vivo culture depends on matrix stiffness. Combined analysis of the microarray and experimental data revealed that Krüppel-like factor (Klf)5 was the most up-regulated transcription factor accompanied by the down-regulation of Klf4 when cells were on stiff matrix. These changes were reversed by soft matrix via extracellular signal-regulated kinase (ERK) inactivation. Knockdown of Klf5 or forced expression of Klf4 inhibited stiff matrix-induced cell spreading and proliferation, suggesting that Klf5/Klf4 act as positive and negative regulators, respectively. Moreover, stiff matrix-activated ERK increased the protein level and nuclear translocation of mechanosensitive Yes-associated protein 1 (YAP1), which is reported to prevent Klf5 degradation. Finally, in vivo model of unilateral ureteral obstruction revealed that matrix stiffness-regulated Klf5/Klf4 is related to the pathogenesis of renal fibrosis. In the dilated tubules of obstructed kidney, ERK/YAP1/Klf5/cyclin D1 axis was up-regulated and Klf4 was down-regulated. Inhibition of collagen crosslinking by lysyl oxidase inhibitor alleviated unilateral ureteral obstruction-induced tubular dilatation and proliferation, preserved Klf4, and suppressed the ERK/YAP1/Klf5/cyclin D1 axis. This study unravels a novel mechanism how matrix stiffness regulates cellular proliferation and highlights the importance of matrix stiffness-modulated Klf5/Klf4 in the regulation of renal physiologic functions and fibrosis progression.
Current hemodialysis has functional limitations and is insufficient for renal transplantation. The bioartificial tubule device has been developed to contribute to metabolic functions by implanting renal epithelial cells into hollow tubes and showed a higher survival rate in acute kidney injury patients. In healthy kidney, epithelial cells are surrounded by various types of cells that interact with extracellular matrices, which are primarily composed of laminin and collagen. The current study developed a microfluidic coculture platform to enhance epithelial cell function in bioartificial microenvironments with multiple microfluidic channels that are microfabricated by polydimethylsiloxane. Collagen gel (CG) encapsulated with adipose-derived stem cells (CG-ASC) was injected into a central microfluidic channel for three-dimensional (3D) culture. The resuspended Madin-Darby canine kidney (MDCK) cells were injected into nascent channels and formed an epithelial monolayer. In comparison to coculture different cells using the commercial transwell system, the current coculture device allowed living cell monitoring of both the MDCK epithelial monolayer and CG-ASC in a 3D microenvironment. By coculture with CG-ASC, the cell height was increased with columnar shapes in MDCK. Promotion of cilia formation and functional expression of the ion transport protein in MDCK were also observed in the cocultured microfluidic device. When applying fluid flow, the intracellular protein dynamics can be monitored in the current platform by using the time-lapse confocal microscopy and transfection of GFP-tubulin plasmid in MDCK. Thus, this microfluidic coculture device provides the renal epithelial cells with both morphological and functional improvements that may avail to develop bioartificial renal chips.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.