Conductive polymer/sulfur composite materials were prepared by heating the mixture of polyacrylonitrile (PAN) and sublimed sulfur. During the heating process, PAN was dehydrogenated by sulfur, forming a conductive main chain similar to polyacetylene. At the same time, the high‐polarity functional group –CN cyclized at the melt state, forming a thermally stable heterocyclic compound in which sulfur was embedded. The nanodispersed composites showed excellent electrochemical properties. Tested as cathode material in a non‐aqueous lithium cell based on poly(vinylidene fluoride) (PVDF) gel electrolyte at room temperature, the composite exhibited a specific capacity up to 850 mA h g–1 in the initial cycle. Its specific capacity remained above 600 mA h g–1 after 50 cycles, about five times that of LiCoO2, and recovered partly after replacement of the anode with a fresh lithium sheet. The utilization of the electrochemically active sulfur was about 90 % assuming a complete reaction to the product, Li2S.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.