For tissue engineering and regeneration, a porous scaffold with interconnected networks is needed to guide cell attachment and growth/ingrowth in three-dimensional (3D) structure. Using a rapid prototyping (RP) technique, we designed and fabricated 3D plotting system and three types of scaffolds: those from polycaprolactone (PCL), those from PCL and hydroxyapatite (HA), and those from PCL/HA and with a shifted pattern structure (PCL/HA/SP scaffold). Shifted pattern structure was fabricated to increase the cell attachment/adhesion. The PCL/HA/SP scaffold had a lower compressive modulus than PCL and PCL/HA scaffold. However, it has a better cell attachment than the scaffolds without a shifted pattern. MTT assay and alkaline phosphatase activity results for the PCL/HA/SP scaffolds were significantly enhanced compared to the results for the PCL and PCL/HA scaffolds. According to their degree of cell proliferation/differentiation, the scaffolds were in the following order: PCL/HA/SP > PCL/HA > PCL. These 3D scaffolds will be applicable for tissue engineering based on unique plotting system.
For patients who suffer from sensorineural hearing loss by damaged or loss of hair cells in the cochlea, biomimetic artificial cochleas to remedy the disadvantages of existing implant systems have been intensively studied. Here, a new concept of an inorganic‐based piezoelectric acoustic nanosensor (iPANS) for the purpose of a biomimetic artificial hair cell to mimic the functions of the original human hair cells is introduced. A trapezoidal silicone‐based membrane (SM) mimics the function of the natural basilar membrane for frequency selectivity, and a flexible iPANS is fabricated on the SM utilizing a laser lift‐off technology to overcome the brittle characteristics of inorganic piezoelectric materials. The vibration amplitude vs piezoelectric sensing signals are theoretically examined based on the experimental conditions by finite element analysis. The SM is successful at separating the audible frequency range of incoming sound, vibrating distinctively according to varying locations of different sound frequencies, thus allowing iPANS to convert tiny vibration displacement of ≈15 nm into an electrical sensing output of ≈55 μV, which is close to the simulation results presented. This conceptual iPANS of flexible inorganic piezoelectric materials sheds light on the new fields of nature‐inspired biomimetic systems using inherently high piezoelectric charge constants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.