Outstanding electrocatalysts for high‐efficiency water splitting demand not only the high intrinsic activity determined by the electronic structure but also a favorable mass transfer (electrolyte diffusion and bubble desorption) and strong structural stability. Here, a 3D core–shell electrocatalyst consisting of Co(OH)2 cavity array‐encapsulated NiMo alloy on the flexible carbon cloth substrate (Co(OH)2/NiMo CA@CC) is proposed. Density functional theory reveals that coupling NiMo with Co(OH)2 can better optimize the water adsorption/dissociation and hydrogen adsorption energies in hydrogen evolution reaction, and also accelerate the kinetics of oxygen evolution reaction. Based on this, the open porous structure of the outer Co(OH)2 cavity array further promotes the diffusion of the electrolyte into the heterogeneous interface between NiMo and Co(OH)2, significantly shortening the electron transfer pathways and exposing multiple active sites. In addition, the macroporous array structure accelerates the bubble evolution and desorption process, thus ensuring a rapid mass transfer. When served as bifunctional electrocatalysts toward alkaline overall water splitting, Co(OH)2/NiMo CA@CC delivers a current density of 10 mA cm−2 at a low cell voltage of 1.52 V. Results support the multiscale optimization of the surface/interface engineering induced by the macroporous array.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.