One of the important issues in software testing is to provide an automated test oracle. Test oracles are reliable sources of how the software under test must operate. In particular, they are used to evaluate the actual results produced by the software. However, in order to generate an automated test oracle, it is necessary to map the input domain to the output domain automatically. In this paper, Multi-Networks Oracles based on Artificial Neural Networks are introduced to handle the mapping automatically. They are an enhanced version of previous ANN-Based Oracles. The proposed model was evaluated by a framework provided by mutation testing and applied to test two industry-sized case studies. In particular, a mutated version of each case study was provided and injected with some faults. Then, a fault-free version of it was developed as a Golden Version to evaluate the capability of the proposed oracle finding the injected faults. Meanwhile, the quality of the proposed oracle is measured by assessing its accuracy, precision, misclassification error and recall. Furthermore, the results of the proposed oracle are compared with former ANN-based Oracles. Accuracy of the proposed oracle was up to 98.93%, and the oracle detected up to 98% of the injected faults. The results of the study show the proposed oracle has better quality and applicability than the previous model.
Recent methods for detailed and accurate biomass and carbon stock estimation of forests have been driven by advances in remote sensing technology. The conventional approach to biomass estimation heavily relies on the tree species and site-specific allometric equations, which are based on destructive methods. This paper introduces a non-destructive, laser-based approach (terrestrial laser scanner) for individual tree aboveground biomass estimation in the Royal Belum forest reserve, Perak, Malaysia. The study area is in the state park, and it is believed to be one of the oldest rainforests in the world. The point clouds generated for 35 forest plots, using the terrestrial laser scanner, were geo-rectified and cleaned to produce separate point clouds for individual trees. The volumes of tree trunks were estimated based on a cylinder model fitted to the point clouds. The biomasses of tree trunks were calculated by multiplying the volume and the species wood density. The biomasses of branches and leaves were also estimated based on the estimated volume and density values. Branch and leaf volumes were estimated based on the fitted point clouds using an alpha-shape approach. The estimated individual biomass and the total above ground biomass were compared with the aboveground biomass (AGB) value estimated using existing allometric equations and individual tree census data collected in the field. The results show that the combination of a simple single-tree stem reconstruction and wood density can be used to estimate stem biomass comparable to the results usually obtained through existing allometric equations. However, there are several issues associated with the data and method used for branch and leaf biomass estimations, which need further improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.