In a previous study, we reported ten new polyoxygenated cyathane diterpenoids, neocyathins A–J, and their anti-neuroinflammatory effects from the liquid culture of the medicinal Basidiomycete Cyathus africanus. In the present study, eight new highly polyoxygenated cyathane diterpenoids, named neocyathins K–R (1–8), were isolated from the solid culture of C. africanus cultivated on cooked rice, together with three known congeners (9–11). The structures and the absolute configurations of the new compounds were elucidated through comprehensive NMR and HRESIMS spectroscopic data, electronic circular dichroism (ECD) data, and chemical conversion. Compounds 1 and 2 represent the first reported naturally occurring compounds with 4,9-seco-cyathane carbon skeleton incorporating an unprecedented medium-sized 9/7 fused ring system, while the 3,4-seco-cyathane derivative (3) was isolated from Cyathus species for the first time. All compounds were evaluated for their neurotrophic and anti-neuroinflammatory activity. All the isolates at 1–25 μM displayed differential nerve growth factor (NGF)-induced neurite outgrowth-promoting activity in PC-12 cells, while one of the compounds, allocyathin B2 (11), inhibited NO production in lipopolysaccharide (LPS)-stimulated microglia BV-2 cells. In addition, molecular docking studies showed that compound 11 generated interactions with the inducible nitric oxide synthase (iNOS) protein.
Ten new polyoxygenated cyathane diterpenoids, named neocyathins A–J (1–10), together with four known diterpenes (11–14), were isolated from the liquid culture of the medicinal basidiomycete fungus Cyathus africanus. The structures and configurations of these new compounds were elucidated through comprehensive spectroscopic analyses including 1D NMR, 2D NMR (HSQC, HMBC, NOESY) and HRESIMS, and electronic circular dichroism (ECD) data. Neuroinflammation is implicated in the pathogenesis of various neurodegenerative diseases, such as Alzheimers’ disease (AD). All isolated compounds were evaluated for the potential anti-neuroinflammatory activities in BV2 microglia cells. Several compounds showed differential effects on the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated and Aβ1–42-treated mouse microglia cell line BV-2. Molecular docking revealed that bioactive compounds (e.g., 11) could interact with iNOS protein other than COX-2 protein. Collectively, our results suggested that this class of cyathane diterpenoids might serve as important lead compounds for drug discovery against neuroinflammation in AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.