Monodispersive size-controlled gold nanoplates were synthesized with high purity from the reduction of hydrogen tetrachloroaurate by reduced amount of sodium citrate, which kinetically controls the reaction pathway, in the presence of poly(vinyl pyrrolidone) (PVP). With the insufficient addition of the reductant, the molar ratio of sodium citrate and PVP relative to hydrogen tetrachloroaurate played an important role in determining the geometric shape and size of the product. These nanoplates were single crystals with planar width of 80-500 nm and thickness of 10-40 nm, exhibiting strong surface plasmon absorption in the near-infrared (NIR) region of 700-2000 nm. The gold nanoplates were used as the synthetically provided nanoblocks to fabricate single-crystalline nanocomponents, such as a nanoscaled gear or a nanoscaled letter.
Summary: We investigated the formation of thermoresponsive gold nanoparticle/poly(N‐isopropylacrylamide) (AuNP/PNIPAAm) core/shell hybrid structures by surface‐initiated, atom transfer radical polymerization (SI‐ATRP) in aqueous media and the effect of cross‐linking on the thermoresponsiveness of the AuNP/PNIPAAm hybrids. The disulfide containing an ATRP initiator was attached onto AuNPs and the monomer, NIPAAm, was polymerized from the surface of AuNPs in the absence or presence of a cross‐linker, ethylene diacrylate, in aqueous media at room temperature. The resulting brush‐type and cross‐linked AuNP/PNIPAAm hybrids were characterized by Fourier‐transform infrared spectroscopy, transmission electron microscopy, and variable temperature dynamic light scattering.
magnified image
Biosilicification in diatoms is achieved by specific interactions between silaffins, composed of polypeptides and long-chain polyamines, and silicic acid derivatives. The polycondensation of silicic acids is reported to be catalyzed by the long-chain polyamines that mainly contain tertiary N-methylpropyleneimine moieties. In this report, we utilized a tertiary amine-containing polymer, poly(2-(dimethylamino)ethyl methacrylate) (poly(DMAEMA)), as a surface-grafted, biomimetic counterpart of the long-chain polyamines in silaffins and demonstrated that the surface-initiated polycondensation of silicic acids, leading to the formation of silica thin films, proceeded smoothly on surfaces presenting poly(DMAEMA), where poly(DMAEMA) was grown from gold surfaces by surface-initiated, atom transfer radical polymerization. The formed silica film was characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, and scanning electron microscopy.
We investigated the spectral features of the n(NC) bands when 4,4 -biphenyl diisocyanide (BPDNC) is adsorbed on gold nanoparticle surfaces by surface-enhanced Raman scattering (SERS). The mode of adsorption of BPDNC on gold nanoparticles was found to change with the bulk concentration. At low concentrations of BPDNC, only the n(NC) bound band was conspicuous at ∼2185 cm −1 and the free NC stretching band was barely detected in the SERS spectra. When the bulk concentration was increased, the n(NC) free band became prominent at ∼2123 cm −1 . BPDNC was assumed to bridge two different gold particles at low concentrations, but as the concentration was increased, the bridge appeared to be broken and bonded to the gold particle only via one of the two isocyanide groups. On the basis of the electromagnetic surface selection rule, we attempted to explain the orientation of the adsorbate on Au surfaces by determining the relative enhancement factor of each vibrational band.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.