Background/Aims: The application of electrolyzed water (EW) at the cathode side to manufacture reverse osmosis (RO) water and hemodialysis (HD) solution can actually lead to less oxidative capacity in chemical terms. The present study examined the biological actions of this water on human polymorphonuclear leukocytes (PMNs), and the clinical feasibility of applying this technology to HD treatment. Methods: RO water using EW (e-RO) exhibited less chemiluminescence in luminol-hydrogen peroxide and higher dissolved hydrogen levels (–99.0 ppb) compared with control RO water. The effects of e-RO on PMN viability were tested. HD using e-RO was performed for 12 consecutive sessions in 8 patients for the feasibility test. Results: Basal cellular viability and function to generate superoxide radicals of PMNs were better preserved by e-RO application. In the clinical trial, reductions of blood pressure were noted, but no adverse events were observed. There were no changes in the blood dialysis parameters, although methylguanidine levels were significantly decreased at the end of study. Conclusion: The present study demonstrated the capacity of e-RO to preserve the viability of PMNs, and the clinical feasibility of applying this water for HD treatment. The clinical application of this technology may improve the bio-compatibility of HD treatment.
Elevated oxidative stress (OS) is associated with severe cardiovascular disease and premature death among patients treated with hemodialysis (HD). Oxidative stress is enhanced by contact between blood and dialysis membranes during HD sessions. This study aimed to clarify whether hydrogen (H2), which is a known antioxidant, is capable of suppressing increased OS induced during HD sessions. Eight patients on regular HD treatment were studied. Two HD sessions were performed in a cross-over design trial using standard and hydrogen-enriched solutions (mean of 50 p.p.b. H2; H2-HD). Blood samples were obtained from the inlet and outlet of the dialyzer during HD to determine changes in plasma levels of glutathione, hydrogen peroxide, and albumin redox state as a marker of OS. Comparison of inlet and outlet blood revealed significant decreases in total glutathione and reduced glutathione, as well as significant increases in hydrogen peroxide in both HD treatments. However, the mean proportion of reversibly oxidized albumin in outlet serum was significantly lower than that in inlet serum following the H2-HD session, whereas no significant changes were found in the standard solution session, suggesting that "intra-dialyzer" OS is reduced by H2 -HD. In conclusion, the application of H2-enriched solutions could ameliorate OS during HD.
Consumption of EW by ad libitum drinking has the potential to ameliorate ischemia-induced cardio-renal injury in CKD model rats. This indicates a novel strategy of applying H(2) produced by water electrolysis technology for the prevention of CKD cardio-renal syndrome.
These results indicate the combinatory effect of MGO and H(2)O(2) on PMN oxidative injury, and this pathology may be linked to enhanced oxidative stress in CKD.
BackgroundPeritoneal dialysis (PD) is used as renal replacement therapy in patients with end-stage kidney disease. However, peritoneal membrane failure remains problematic and constitutes a critical cause of PD discontinuation. Recent studies have revealed the unique biological action of molecular hydrogen (H2) as an anti-oxidant, which ameliorates tissue injury. In the present study, we aimed to examine the effects of H2 on the peritoneal membrane of experimental PD rats.MethodEight-week-old male Sprague-Dawley rats were divided into the following groups (n = 8–11 each) receiving different test solutions: control group (no treatment), PD group (commercially available lactate-based neutral 2.5% glucose PD solution), and H2PD group (PD solution with dissolved H2 at 400 ppb). Furthermore, the influence of iron (FeCl3: 5 μM: inducer of oxidative cellular injury) in the respective PD solutions was also examined (Fe-PD and Fe-H2PD groups). The H2PD solution was manufactured by bathing a PD bag in H2-oversaturated water created by electrolysis of the water. Twenty mL of the test solutions were intraperitoneally injected once a day for 10 days. Parietal peritoneum samples and cells collected from the peritoneal surface following treatment with trypsin were subjected to analysis.ResultsIn the PD group as compared to controls, a mild but significant sub-mesothelial thickening was observed, with increase in the number of cells in the peritoneal surface tissue that were positive for apoptosis, proliferation and vimentin, as seen by immunostaining. There were significantly fewer of such changes in the H2PD group, in which there was a dominant presence of M2 (CD163+) macrophages in the peritoneum. The Fe-PD group showed a significant loss of mesothelial cells with sub-mesothelial thickening, these changes being ameliorated in the Fe-H2PD group.ConclusionH2-dissolved PD solutions could preserve mesothelial cells and peritoneal membrane integrity in PD rats. Clinical application of H2 in PD could be a novel strategy for protection of peritoneal tissue during PD treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.