BackgroundIdentifying the emotional state is helpful in applications involving patients with autism and other intellectual disabilities; computer-based training, human computer interaction etc. Electrocardiogram (ECG) signals, being an activity of the autonomous nervous system (ANS), reflect the underlying true emotional state of a person. However, the performance of various methods developed so far lacks accuracy, and more robust methods need to be developed to identify the emotional pattern associated with ECG signals.MethodsEmotional ECG data was obtained from sixty participants by inducing the six basic emotional states (happiness, sadness, fear, disgust, surprise and neutral) using audio-visual stimuli. The non-linear feature ‘Hurst’ was computed using Rescaled Range Statistics (RRS) and Finite Variance Scaling (FVS) methods. New Hurst features were proposed by combining the existing RRS and FVS methods with Higher Order Statistics (HOS). The features were then classified using four classifiers – Bayesian Classifier, Regression Tree, K- nearest neighbor and Fuzzy K-nearest neighbor. Seventy percent of the features were used for training and thirty percent for testing the algorithm.ResultsAnalysis of Variance (ANOVA) conveyed that Hurst and the proposed features were statistically significant (p < 0.001). Hurst computed using RRS and FVS methods showed similar classification accuracy. The features obtained by combining FVS and HOS performed better with a maximum accuracy of 92.87% and 76.45% for classifying the six emotional states using random and subject independent validation respectively.ConclusionsThe results indicate that the combination of non-linear analysis and HOS tend to capture the finer emotional changes that can be seen in healthy ECG data. This work can be further fine tuned to develop a real time system.
Higher order statistics (HOS) is an efficient feature extraction method used in diverse applications such as bio signal processing, seismic data processing, image processing, sonar, and radar. In this work, we have investigated the application of HOS to derive a set of features from facial electromyography (fEMG) signals for classifying six emotional states (happy, sad, afraid, surprised, disgusted, and neutral). fEMG signals were collected from different types of subjects in a controlled environment using audio-visual (film clips/ video clips) stimuli. Acquired fEMG signals were preprocessed using moving average filter and a set of statistical features were extracted from fEMG signals. Extracted features were mapped into corresponding emotions using k-nearest neighbor classifier. Principal component analysis was utilized to analyze the efficacy of HOS features over conventional statistical features on retaining the emotional information retrieval from fEMG signals. The results of this work indicate an improved mean emotion recognition rate of 69.5% from this proposed methodology to recognize six emotional states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.