Depletion of mtDNA in myocytes causes insulin resistance and alters nuclear gene expression that may be involved in rescuing processes against cellular stress. Here we show that the expression of C1q tumor necrosis factor ␣-related protein isoform 5 (C1QTNF5) is drastically increased following depletion of mtDNA in myocytes. C1QTNF5 is homologous to adiponectin in respect to domain structure, and its expression and secretion from myocytes correlated negatively with the cellular mtDNA content. Similar to adiponectin, C1QTNF5 induced the phosphorylation of AMP-activated protein kinase (AMPK), leading to increased cell surface recruitment of GLUT4 and increased glucose uptake. Treatment of cells with purified recombinant C1QTNF5 increased the phosphorylation of acetyl-CoA carboxylase and stimulated fatty acid oxidation. C1QTNF5-mediated phosphorylation of AMPK or acetyl-CoA carboxylase was unaffected by depletion of adiponectin receptors such as AdipoR1 or AdipoR2, which indicated that adiponectin receptors do not participate in C1QTNF5-induced activation of AMPK. Serum C1QTNF5 levels were significantly higher in obese/diabetic animals (OLETF rats, ob/ob mice, and db/db mice). These results highlight C1QTNF5 as a putative biomarker for mitochondrial dysfunction and a potent activator of AMPK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.