With the increasing demand for efficient and economic energy storage, Li-S batteries have become attractive candidates for the next-generation high-energy rechargeable Li batteries because of their high theoretical energy density and cost effectiveness. Starting from a brief history of Li-S batteries, this Review introduces the electrochemistry of Li-S batteries, and discusses issues resulting from the electrochemistry, such as the electroactivity and the polysulfide dissolution. To address these critical issues, recent advances in Li-S batteries are summarized, including the S cathode, Li anode, electrolyte, and new designs of Li-S batteries with a metallic Li-free anode. Constructing S molecules confined in the conductive microporous carbon materials to improve the cyclability of Li-S batteries serves as a prospective strategy for the industry in the future.
Two criteria for processing additives introduced to control the morphology of bulk heterojunction (BHJ) materials for use in solar cells have been identified: (i) selective (differential) solubility of the fullerene component and (ii) higher boiling point than the host solvent. Using these criteria, we have investigated the class of 1,8-di(R)octanes with various functional groups (R) as processing additives for BHJ solar cells. Control of the BHJ morphology by selective solubility of the fullerene component is demonstrated using these high boiling point processing additives. The best results are obtained with R ) Iodine (I). Using 1,8-diiodooctane as the processing additive, the efficiency of the BHJ solar cells was improved from 3.4% (for the reference device) to 5.1%.
Because
of their high theoretical energy density and low cost,
lithium–sulfur (Li–S) batteries are promising next-generation
energy storage devices. The electrochemical performance of Li–S
batteries largely depends on the efficient reversible conversion of
Li polysulfides to Li2S in discharge and to elemental S
during charging. Here, we report on our discovery that monodisperse
cobalt atoms embedded in nitrogen-doped graphene (Co–N/G) can
trigger the surface-mediated reaction of Li polysulfides. Using a
combination of operando X-ray absorption spectroscopy and first-principles
calculation, we reveal that the Co–N–C coordination
center serves as a bifunctional electrocatalyst to facilitate both
the formation and the decomposition of Li2S in discharge
and charge processes, respectively. The S@Co–N/G composite,
with a high S mass ratio of 90 wt %, can deliver a gravimetric capacity
of 1210 mAh g–1, and it exhibits an areal capacity
of 5.1 mAh cm–2 with capacity fading rate of 0.029%
per cycle over 100 cycles at 0.2 C at S loading of 6.0 mg cm–2 on the electrode disk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.