Word sense disambiguation as a central research topic in natural language processing can promote the development of many applications such as information retrieval, speech synthesis, machine translation, summarization and question answering. Previous approaches can be grouped into three categories: supervised, unsupervised and knowledge-based. The accuracy of supervised methods is the highest, but they suffer from knowledge acquisition bottleneck. Unsupervised method can avoid knowledge acquisition bottleneck, but its effect is not satisfactory. With the built-up of large-scale knowledge, knowledge-based approach has attracted more and more attention. This paper introduces a new context weighting method, and based on which proposes a novel semi-supervised approach for word sense disambiguation. The significant contribution of our method is that thesaurus and machine learning techniques are integrated in word sense disambiguation. Compared with the state of the art on the test data of the English all words disambiguation task in Sensaval-3, our method yields obvious improvements over existing methods in nouns, adjectives and verbs disambiguation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.