Geopolymer material was used as the raw material because it promotes the green technology. In this study, lightweight geopolymer was produced using fly ash as raw material with the addition of alkali activation which is mixture of sodium silicate and sodium hydroxide, foaming agent that gives lightweight properties and finally, underwent curing process. The molarity of sodium hydroxide (NaOH) used was fixed at 12 M while the ratio of fly ash to alkali activator (solid to liquid) used were varied in the range of 2.0, 2.5, 3.0 and 3.5, by mass. Besides that, foaming agent (Polyoxyethylene alkyether Sulfate) was added to the geopolymer sample to give the lightweight properties. The samples were cured at 80 °C for 24 hours in the oven for curing process and left at room temperature prior for testing for 14 days. The testing of sample was conducted in this study which includes density test, compression strength test, water absorption test and scanning electron microstructure (SEM) test. The results obtained for optimum solid to liquid ratio is 2.5, by mass with the optimum value of compressive strength density value. The mechanical and physical properties of lightweight geopolymer were based on the ASTM International Standard.
Nowadays, the demand for lightweight building materials has been growing worldwide. This paper presents an investigation on the use of waste materials of fly ash as a source materials for the production of lightweight geopolymer by using foaming agents. The key properties for the foamed geopolymer namely density, compressive strength, and water absorption were investigated. The chemical composition of materials and morphology analysis were studied to find the microstructure properties of foamed geopolymer. The foamed geopolymer were prepared by combination of 12 M Sodium Hydroxide (NaOH) solution and Sodium Silicate (Na 2 SiO 3 ) solution. The ratio of Na 2 SiO 3 /NaOH and ratio of fly ash/alkaline activator were kept constant at 2.5 and 2.0, by mass respectively. The effect of different ratio of foaming agent/water and foam/geopolymer paste were investigated at 7 days of ageing and cured at 80°C for 24 hours. In general, the results showed that the fly ash-based lightweight geopolymer has good potential as brick application.Keywords: lightweight brick, geopolymer, foaming agent/water ratio, foam/geopolymer paste ratio Brick is one of the most important building material in construction industry. Manufacturing of conventional brick are generally uses of clay with high temperature kiln firing or from ordinary Portland cement (OPC) concrete [1]. The high temperature kiln firing (900 -1000°C) not only consumes significant amount of energy, but also releases substantial quantity of greenhouse gases [2]. Production of OPC concrete bricks also consumes large amount of energy and releases substantial quantity of CO 2 . This is because the production of 1 kg of OPC consumes approximately 1.5 kWh of energy and releases about 1 kg of CO 2 to the atmosphere [3]. Due to this problem, the utilization of waste materials has been studied by several researchers focused on the environmental protection and sustainable development [4][5][6]. The uses of fly ash, which is a waste produced from the thermal power plant can be used as a cement and clay replacement in making bricks through geopolymerization process.Geopolymerization occurs through the reaction between aluminosilicate source materials with highly alkaline solutions. The alkaline activator solution are usually come from the combination of sodium hydroxide and sodium silicate or a potassium hydroxide and potassium silicate solution [7]. Most waste materials such as fly ash, blast furnace slag and mine tailings contain sufficient amounts of reactive alumina and silica can be used as source materials for geopolymerisation reactions [8]. Among the above mentioned waste materials, fly ash get most consideration to be a source materials in manufacturing of geopolymer due to their genially structure and size, also *
Geopolymers are an inorganic material in an alkaline environment that is synthesized with alumina–silica gel. The structure of geopolymers consists of an inorganic chain of material and a covalent-bound molecular system. Currently, Ordinary Portland Cement (OPC) has caused carbon dioxide (CO2) emissions which causes greenhouse effects. This analysis investigates the impact on fly ash/dolomite-based-geopolymer with various molarities of sodium hydroxide solutions which are 6 M, 8 M, 10 M, 12 M and 14 M. The samples of fly ash/dolomite-based-geopolymer were prepared with the usage of solid to liquid of 2.0, by mass and alkaline activator ratio of 2.5, by mass. After that, the geopolymer was cast in 50 × 50 × 50 mm molds before testing after 7 days of curing. The samples were tested on compressive strength, density, water absorption, morphology, elemental distributions and phase analysis. From the results, the usage of 8 M of NaOH gave the optimum properties for the fly ash/dolomite-based geopolymer. The elemental distribution analysis exposes the Al, Si, Ca, Fe and Mg chemical distribution of the samples from the selected area. The distribution of the elements is related to the compressive strength and compared with the chemical composition of the fly ash and dolomite.
The primary motivation of developing ceramic materials using geopolymer method is to minimize the reliance on high sintering temperatures. The ultra-high molecular weight polyethylene (UHMWPE) was added as binder and reinforces the nepheline ceramics based geopolymer. The samples were sintered at 900 °C, 1000 °C, 1100 °C, and 1200 °C to elucidate the influence of sintering on the physical and microstructural properties. The results indicated that a maximum flexural strength of 92 MPa is attainable once the samples are used to be sintered at 1200 °C. It was also determined that the density, porosity, volumetric shrinkage, and water absorption of the samples also affected by the sintering due to the change of microstructure and crystallinity. The IR spectra reveal that the band at around 1400 cm−1 becomes weak, indicating that sodium carbonate decomposed and began to react with the silica and alumina released from gels to form nepheline phases. The sintering process influence in the development of the final microstructure thus improving the properties of the ceramic materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.