Oil palm fronds (OPF) and trunks contribute the highest biomass availability compared with other oil palm wastes. At the moment, they are usually left on the ground around the plantation area to decompose naturally and fertilize the soil. Previous researchers have focused on torrefaction of wood residues and other agricultural biomass with less attention has been paid to the utilization of Malaysia’s biomass such as OPF. Therefore, in this study, torrefaction of OPF was conducted in a tubular reactor at temperatures between 200 and 300 °C and residence time of 30 min. The results reveal an improved heating value as the temperature was increased, from 16.81 to 20.32 MJ/kg after the torrefaction process. The van Krevelen diagram also proved that torrefaction OPF could be classified as an intermediate, between raw OPF and coal. This proves the potential of OPF as one of the alternative feedstocks for energy production process through torrefaction.
Biomass has become one of the most commonly used renewable sources of energy in the last two decades. Empty fruit bunch (EFB) is one of the examples for the biomass that is used as a renewable energy source. From the palm oil processing industry, only 10% are the final products such as palm oil and palm kernel oil, while the remaining 90% are harvestable biomass waste in the form of EFB, palm kernel shell (PKS) and oil palm frond (OPF). This overload amount of biomass waste will cause an abundance of waste which will also affect the environment. To convert EFB into usable energy in ways that are more efficient, less polluting, and economical, gasification has merge as one of the most favorable technological innovations in synthesis gas (syngas) production. The main aim of this work is to study the EFB gasification in an entrained flow gasification process based on the different operating temperature (700°C to 900°C) and equivalence ratio, ER (0.2 -0.4), evaluated based on the production of gases such as hydrogen (H 2 ), carbon monoxide (CO), carbon dioxide (CO 2 ) and methane (CH 4 ). It was found that as the temperature was increased from 700°C to 900°C, the production of H 2 and CO 2 increased while CO was decreased. The optimum ER value of 0.30 was found to attain the highest Cold Gas Efficiency (CGE) value of 74.03% at 900°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.