2 2 Wan Ab Naim, W.N et al It is believed that the progression of Stanford type B aortic dissection is closely associated with vascular geometry and hemodynamic parameters. The hemodynamic differences owing to the presence of greater than two tears have not been explored. The focus of the present study is to investigate the impact of an additional reentry tear on the flow, pressure and wall shear stress distribution in the dissected aorta. A 3D aorta model with one entry and one reentry tear was generated from computed tomography (CT) angiographic images of a patient with Stanford Type B aortic dissection. To investigate the hemodynamic effect of more than two tear locations, an additional circular reentry tear was added 24 mm above the original reentry tear. Our simulation results showed that the presence of an additional reentry tear provided an extra return path for blood back to the true lumen during systole, and an extra outflow path into the false lumen during diastole. The presence of this additional path led to a decrease in the false lumen pressure, particularly at the distal region. Meanwhile, the presence of this additional tear cause no significant difference on the time average wall shear stress (TAWSS) distribution except at regions adjacent to reentry tear 2. Moderate and concentrated TAWSS was observed at the bottom region of this additional tear which may lead to further extension of the tear distally.
Aortic dissection, characterized by separation of the layers of the aortic wall, poses a significant challenge for clinicians. While type A aortic dissection patients are normally managed using surgical treatment, optimal treatment strategy for type B aortic dissection remains controversial and requires further evaluation. Although aortic diameter measured by CT angiography has been clinically used as a guideline to predict dilation in aortic dissection, hemodynamic parameters (e.g., pressure and wall shear stress), geometrical factors, and composition of the aorta wall are known to substantially affect disease progression. Due to the limitations of cardiac imaging modalities, numerical simulations have been widely used for the prediction of disease progression and therapeutic outcomes, by providing detailed insights into the hemodynamics. This paper presents a comprehensive review of the existing numerical models developed to investigate reasons behind tear initiation and progression, as well as the effectiveness of various treatment strategies, particularly the stent graft treatment.
A computational approach is used to investigate potential risk factors for distal stent graft-induced new entry (dSINE) in aortic dissection (AD) patients. Patient-specific simulations were performed based on computed tomography images acquired from six AD patients (three dSINE and three non-dSINE) to analyze the correlation between anatomical characteristics and stress/strain distributions. Sensitivity analysis was carried out using idealized models to independently assess the effect of stent graft length, stent tortuosity and wedge apposition angle at the landing zone on key biomechanical variables. Mismatch of biomechanical properties between the stented and nonstented regions led to high stress at the distal stent graft-vessel interface in all patients, as well as shear strain in the neighbouring region, which coincides with the location of tear formation. Stress was observed to increase with the increase of stent tortuosity (from 263kPa at a tortuosity angle of 50o to 313 kPa at 30o). It was further amplified by stent graft landing at the inflection point of a curve. Malapposition of the stent graft led to an asymmetrical segment within the aorta, therefore changing the location and magnitude of the maximum von Mises stress substantially (up to +25.9% with a +25o change in the distal wedge apposition angle). In conclusion, stent tortuosity and wedge apposition angle serve as important risk predictors for dSINE formation in AD patients.
Endovascular stent graft repair has become a common treatment for complicated Stanford type B aortic dissection to restore true lumen flow and induce false lumen thrombosis. Using computational fluid dynamics, this study reports the differences in flow patterns and wall shear stress distribution in complicated Stanford type B aortic dissection patients after endovascular stent graft repair. Five patients were included in this study: 2 have more than 80% false lumen thrombosis (group 1), while 3 others had less than 80% false lumen thrombosis (group 2) within 1 year following endovascular repair. Group 1 patients had concentrated re-entry tears around the abdominal branches only, while group 2 patients had re-entry tears that spread along the dissection line. Blood flow inside the false lumen which affected thrombus formation increased with the number of re-entry tears and when only small amounts of blood that entered the false lumen exited through the branches. In those cases where dissection extended below the abdominal branches (group 2), patients with fewer re-entry tears and longer distance between the tears had low wall shear stress contributing to thrombosis. This work provides an insight into predicting the development of complete or incomplete false lumen thrombosis and has implications for patient selection for treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.