In this work, baseline energy model development using Artificial Neural Network (ANN) with resampling techniques; Cross Validation (CV) and Bootstrap (BS) are presented. Resampling techniques are used to examine the ability of the ANN model to deal with a small dataset. Working days, class days and Cooling Degree Days (CDD) are used as ANN input meanwhile the ANN output is monthly electricity consumption. The coefficient of correlation (R) is used as performance function to evaluate the model accuracy. For this analysis, R is calculated for the entire data set (R_all) and separately for training set (R_train), validation set (R_valid) dan testing set (R_test). The closer R to 1, the higher similarities between targeted and predicted output. The total of two different models with several number of neurons are developed and compared. It can be concluded that all models are capable to train the network. Artificial Neural Network with Bootstrap Cross Validation technique (ANN-BSCV) outperforms Artificial Neural Network with Cross Validation technique (ANN-CV). The 3-6-1 ANN-BSCV, with R_train = 0.95668, R_valid = 0.97553, R_test = 0.85726 and R_all = 0.94079 is selected as the baseline energy model to predict energy consumption for Option C IPMVP.
This paper presents a Hybrid Artificial Neural Network (HANN) for chiller system Measurement and Verification (M&V) model development. In this work, hybridization of Evolutionary Programming (EP) and Artificial Neural Network (ANN) are considered in modeling the baseline electrical energy consumption for a chiller system hence quantifying saving. EP with coefficient of correlation (R) objective function is used in optimizing the neural network training process and selecting the optimal values of ANN initial weights and biases. Three inputs that are affecting energy use of the chiller system are selected; 1) operating time, 2) refrigerant tonnage and 3) differential temperature. The output is hourly energy use of building air-conditioning system. The HANN model is simulated with 16 different structures and the results reveal that all HANN structures produce higher prediction performance with R is above 0.977. The best structure with the highest value of R is selected as the baseline model hence is used to determine the saving. The avoided energy calculated from this model is 132944.59 kWh that contributes to 1.38% of saving percentage.
<span lang="EN-US">This paper aims to develop a hybrid artificial neural network for Option C Measurement and Verification model to predict monthly building energy consumption. In this work, baseline energy model development using artificial neural networks embedded with artificial bee colony optimization and cross validation technique for a small dataset were considered. Artificial bee colony optimization with coefficient of correlation fitness function was used in optimizing the neural network training process and selecting the optimal values of initial weights and biases. Working days, class days and cooling degree days were used as input meanwhile monthly electricity consumption as an output of artificial neural network. The results indicated that this hybrid artificial neural network model provided better prediction results compared to the other model. The best model with the highest value of coefficient of correlation was selected as the baseline model hence is used to determine the saving. </span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.