Effect of formulation of alginate beads on their mechanical behavior and stiffness.
AbstractThe aim of this work was to determine the effect of formulation of alginate beads on their mechanical behavior and stiffness when compressed at high speed. The alginate beads were formulated using different types and concentrations of alginate and gelling cations and were produced using an extrusion-dripping method. Single wet beads were compressed at a speed of 40 mm/min, and their elastic limits were investigated, and the corresponding force versus displacement data were obtained. The Young's moduli of the beads were determined from the force versus displacement data using the Hertz's contact mechanics theory. The alginate beads were found to exhibit plastic behavior when they were compressed beyond 50% with the exception of copper-alginate beads for which yield occured at lower deformation. Alginate beads made of higher guluronic acid contents and gelling cations of higher chemical affinity were found to have greater stiffness. Increasing the concentration of alginate and gelling ions also generated a similar effect. At such a compression speed, the values of Young's modulus of the beads were found to be in the range between 250 and 900 kPa depending on the bead formulation.
Alginate hydrogel bead has been widely explored as a vehicle for controlled delivery application due to its non-toxicity, renewability, and ease of formation. However, alginate hydrogel beads are known to have a low stiffness, i.e., Young modulus <1 MPa, and a short dissolution time of between 1 h and 2 h in gastrointestinal fluid. This study aimed to fabricate calcium alginate hydrogel beads with desired properties like high stiffness and extended dissolution behaviour. A temperature-controlled extrusion-dripping method incorporating an immiscible interphase column was used to produce the ultra-high concentration (UHC) calcium hydrogel beads directly from unmodified alginate solution. The UHC beads have an extraordinary internal structure with thick calcium-alginate matrices and large pores in between the matrices. The Young's modulus value of UHC calcium alginate beads was 3.6 MPa, which was approximately 8 times higher than the normal calcium alginate beads. The release profile for the model drug (i.e., methylene blue) encapsulated in UHC beads was found to be extended to 4 h at 80% of drug release (t80). The kinetics of drug release fitted well with the Korsmeyer-Peppas model (r2 ⩾ 0.99) and followed the non-Fickian mechanism. These findings show that the preparation of calcium alginate beads featuring high stiffness and extended dissolution profile can be achieved without any chemical modification or additives. The UHC calcium alginate bead holds excellent promise as an encapsulation carrier of drugs or food used in controlled delivery applications.
The aim of this work was to develop a standard quantitative method to measure the acid tolerance of probiotic cells when exposed to a simulated gastric fluid. Three model strains of different cell concentrations were exposed to a standard simulated gastric fluid of fixed volume. The fluid pH ranged from pH 1.5 to 2.5. In general, the death kinetics followed an exponential trend. The overall death constant, k (d), for all strains was found to be in a power relationship with the pH value and the initial cell concentration, and it can be expressed as k(d)=k(AII) (pH(-9.0)N(0)(-0.19)) where k (AII) is defined as the acid intolerance indicator and N (0) is the initial cell concentration (CFU/ml). This equation was validated with the experimental data with an average R (2) of 0.98. The acid intolerance of cells can be quantitatively expressed by the k (AII) values, where higher value indicates higher intolerance. In conclusion, a standard quantitative method has been developed to measure the acid tolerance of probiotic cells. This could facilitate the selection of probiotic strains and processing technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.