Distributed trust management addresses the challenges of eliciting, evaluating and propagating trust for service providers on the distributed network. By delegating trust management to brokers, individual users can share their feedbacks for services without the overhead of maintaining their own ratings. This research proposes a two-tier trust hierarchy, in which a user relies on her broker to provide reputation rating about any service provider, while brokers leverage their connected partners in aggregating the reputation of unfamiliar service providers. Each broker collects feedbacks from its users on past transactions. To accommodate individual differences, personalized trust is modeled with a Bayesian network. Training strategies such as the expectation maximization (EM) algorithm can be deployed to estimate both server reputation and user bias. This paper presents the design and implementation of a distributed trust simulator, which supports experiments under different configurations. In addition, we have conducted experiments to show the following. 1) Personal rating error converges to below 5% consistently within 10,000 transactions regardless of the training strategy or bias distribution. 2) The choice of trust model has a significant impact on the performance of reputation prediction. 3) The two-tier trust framework scales well to distributed environments. In summary, parameter learning of trust models in the broker-based framework enables both aggregation of feedbacks and personalized reputation prediction.
This paper presents a novel approach to solving the single-vehicle pickup and delivery problem with time windows and capacity constraints (or single-vehicle P D P T W ) . While dynamic programming has been used to find the optimal routing to a given problem, it requires time exponential in the number of tasks. Therefore, at often fails to find the solutions under real-time conditions in an automated factory. This research explores anytime problem solving using genetic algorithms. By utilizing optimal but possibly partial solutions from dynamic programming, the hybrid genetic algorithms can produce near-optimal solutions for problems of sizes up to 25 percent bigger than what can be solved previously. This paper reports the experimental results of the proposed hybrid approach with four different crossover operators as well as three mutation operators. The experiments demonstrated the advantages of the hybrid approach with respect to dynamic task requests.
Recognition of chatting activities in social interactions is useful for constructing human social networks. However, the existence of multiple people involved in multiple dialogues presents special challenges. To model the conversational dynamics of concurrent chatting behaviors, this paper advocates Factorial Conditional Random Fields (FCRFs) as a model to accommodate co-temporal relationships among multiple activity states. In addition, to avoid the use of inefficient Loopy Belief Propagation (LBP) algorithm, we propose using Iterative Classification Algorithm (ICA) as the inference method for FCRFs. We designed experiments to compare our FCRFs model with two dynamic probabilistic models, Parallel Condition Random Fields (PCRFs) and Hidden Markov Models (HMMs), in learning and decoding based on auditory data. The experimental results show that FCRFs outperform PCRFs and HMM-like models. We also discover that FCRFs using the ICA inference approach not only improves the recognition accuracy but also takes significantly less time than the LBP inference method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2025 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.