Five compounds, {(μ-OAc)(DPPD)Cd(μ-PYZ)Cd(DPPD)(μ-OAc)} n (1); HDPPD: 1,3diphenylpropane-1,3-dione; PYZ: pyrazine,4'-Bipy)(DPPD) 2 } n (2) Bipy: bipyridine [(DPPD) 2 Zn(μ-4,4'-Bipy)Zn(DPPD) 2 ] (3), {Cd(μ-DPP)(DPPD) 2 } n (4); DPP: 1,3-di(pyridin-4yl)propane and (Z)-3-hydroxy-1,3-bis(4-methoxyphenyl)prop-2-en-1-one (Z-HMPP), were prepared and identified by elemental analysis, FT-IR, 1 H NMR spectroscopy and singlecrystal X-ray diffraction. 1,2 and 4 form 1D coordination polymers whereas 3 adopts a binuclear structure with the zinc atom in a distorted square-pyramidal geometry. In addition to these complexes, the enolic structure of the Z-HMPP is reported. The ability of compounds to interact with the nine biomacromolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS and Top II) is investigated by the Docking calculations (for 3 and its ligands). The charge distribution pattern of the optimized structure of 3 was studied by NBO analysis. The Polymer Stability Slope for pentameric chain (PSS 5 , new parameter which is proposed in this paper) of the coordination polymers of 1, 2 and 4 were calculated to investigate the variation of energy level during the growing the polymeric chain in the solid phase.
A mixed ligand zinc coordination polymer, {Zn(μ-DPE)(DBM)2}n (1) (HDBM: dibenzoylmethane and DPE: (E)-1,2-di(pyridin-4-yl)ethene), was prepared and identified by elemental analysis, FT-IR, 1H NMR spectroscopy and single-crystal X-ray diffraction. In the 1D linear coordination polymer of 1, the zinc atom has a ZnN2O4 environment with octahedral geometry. These complex units are linked by the bridging of the planar N2 donor DPE ligands. In the coordination network of complex 1, in addition to the hydrogen bonds, the network is more stabilized by π–π stacking interactions between pyridine and β-diketone moieties of the ligands. These interactions increase the ability of the compound to interact with biomacromolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS and Top II) as investigated by docking calculations.
A series of six novel heterocyclic chalcone analogues 4(a-f) has been synthesized by condensing 2-acetyl-5-chlorothiophene with benzaldehyde derivatives in methanol at room temperature using a catalytic amount of sodium hydroxide. The newly synthesized compounds are characterized by IR, mass spectra, elemental analysis and melting point. Subsequently; the structures of these compounds were determined using single crystal X-ray diffraction. All the synthesized compounds were screened for their antioxidant potential by employing various in vitro models such as DPPH free radical scavenging assay, ABTS radical scavenging assay, ferric reducing antioxidant power and cupric ion reducing antioxidant capacity. Results reflect the structural impact on the antioxidant ability of the compounds. The IC 50 values illustrate the mild to good antioxidant activities of the reported compounds. Among them, 4f with a p-methoxy substituent was found to be more potent as antioxidant agent.
Flavokawain B (1) is a natural chalcone extracted from the roots of Piper methysticum, and has been proven to be a potential cytotoxic compound. Using the partial structure of flavokawain B (FKB), about 23 analogs have been synthesized. Among them, compounds 8, 13 and 23 were found in new FKB derivatives. All compounds were evaluated for their cytotoxic properties against two breast cancer cell lines, MCF-7 and MDA-MB-231, thus establishing the structure–activity relationship. The FKB derivatives 16 (IC50 = 6.50 ± 0.40 and 4.12 ± 0.20 μg/mL), 15 (IC50 = 5.50 ± 0.35 and 6.50 ± 1.40 μg/mL) and 13 (IC50 = 7.12 ± 0.80 and 4.04 ± 0.30 μg/mL) exhibited potential cytotoxic effects on the MCF-7 and MDA-MB-231 cell lines. However, the methoxy group substituted in position three and four in compound 2 (IC50 = 8.90 ± 0.60 and 6.80 ± 0.35 μg/mL) and 22 (IC50 = 8.80 ± 0.35 and 14.16 ± 1.10 μg/mL) exhibited good cytotoxicity. The lead compound FKB (1) showed potential cytotoxicity (IC50 = 7.70 ± 0.30 and 5.90 ± 0.30 μg/mL) against two proposed breast cancer cell lines. It is evident that the FKB skeleton is unique for anticancer agents, additionally, the presence of halogens (Cl and F) in position 2 and 3 also improved the cytotoxicity in FKB series. These findings could help to improve the future drug discovery process to treat breast cancer. A molecular dynamics study of active compounds revealed stable interactions within the active site of Janus kinase. The structures of all compounds were determined by 1H-NMR, EI-MS, IR and UV and X-ray crystallographic spectroscopy techniques.
BackgroundCurcumin is one of the leading compound extracted from the dry powder of Curcuma longa (Zingiberaceae family), which possess several pharmacological properties. However, in vivo administration exhibited limited applications in cancer therapies.ResultsTwenty-four curcumin derivatives have synthesized, which comprises cyclohexanone 1–10, acetone 11–17 and cyclopentanone 18–24 series. All the curcuminoids were synthesized by the acid or base catalyzed Claisen Schmidt condenstion reactions, in which β-diketone moiety of curcumin was modified with mono-ketone. These curcuminoids 1–24 were screened against HeLa, K562, MCF-7 (an estrogen-dependent) and MDA-MB-231 (an estrogen-independent) cancer cell lines. Among them, acetone series 11–17 were found to be more selective and potential cytotoxic agents. The compound 14 was exhibited (IC50 = 3.02 ± 1.20 and 1.52 ± 0.60 µg/mL) against MCF-7 and MDA-MB-231 breast cancer cell lines. Among the cyclohexanone series, the compound 4 exhibited (IC50 = 11.04 ± 2.80, 6.50 ± 01.80, 8.70 ± 3.10 and 2.30 ± 1.60 µg/mL) potential cytotoxicity against four proposed cancer cell lines, respectively. All the curcucminoids were characterized with the detailed 1H NMR, IR, UV–Vis, and mass spectroscopic techniques. The structure of compound 4 was confirmed by using the single X-ray crystallography. Additionally, we are going to report the first time spectral data of (2E,6E)-2,6-bis(2-methoxybenzylidene)cyclohexanone (1). Structure–activity relationships revealed that the mono-carbonyl with 2,5-dimethoxy substituted curcuminoids could be an essential for the future drugs against cancer diseases.ConclusionsCurcuminoids with diferuloyl(4-hydroxy-3-methoxycinnamoyl) moiety with mono carbonyl exhibiting potential cytotoxic properties. The compound 14 was exhibited (IC50 = 3.02 ± 1.20 and 1.52 ± 0.60 µg/mL) against MCF-7 and MDA-MB-231 breast cancer cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.