BackgroundNon-productive cellulase adsorption onto lignin has always been deemed to negatively affect the enzymatic hydrolysis of lignocellulosic feedstocks. Therefore, understanding enzyme-lignin interactions is essential for the development of enzyme mixtures, the processes of lignocellulose hydrolysis, and the genetic modification of lignocellulosic biomass and enzymes. In this work, we examined the properties of six lignins from diverse types of lignocellulosic biomass (aspen, pine, corn stover, kenaf, and two Arabidopsis lines, wild-type and SALK mutant of fah1) to determine the mechanism of differences in their adsorption of enzymes.ResultsWe found that lignin sources affected enzyme adsorption using structural features, such as functional groups and lignin composition. Guaiacyl (G) lignin had a higher adsorption capacity on enzymes than syringyl (S) lignin. The low S/G ratio and high uniform lignin fragment size had good correlations with high adsorption capacity. A higher content of phenolic hydroxyl groups and a lower content of carboxylic acid groups resulted in stronger adsorption affinity for corn stover lignin (CL) than for kenaf lignin (KL) and aspen lignin (AL). The lower amount of aliphatic hydroxyls that reduced hydrophobic interactions could explain the higher adsorption capacity of pine lignin (PL) than CL. Enzyme activity assays, as well as the hydrolysis of Avicel, phosphoric acid-swollen cellulose (PASC), and holocellulose, were performed to study the behaviors of mono-component enzymes that resulted in adsorption. We found that cellobiohydrolase (CBH) and xylanase were adsorbed the most by all lignins, endoglucanase (EG) showed less inhibition, and β-glucosidase (BG) was the least affected by lignins, indicating the important role of carbohydrate-binding module (CBM) in protein adsorption.ConclusionLignin sources affect enzyme adsorption using structural features and lignin composition, such as S/G ratio, carboxylic acid, aliphatic hydroxyl, and phenolic hydroxyl. For mono-component enzymes, the adsorption capacity decreased in the order CBH, xylanase > EG > BG. These investigations revealed the difference in lignin properties between diverse biomass and adsorption capacity of enzymes to lignins, and the possible underlying mechanism. The results can also serve as a reference for the genetic modification of lignocellulosic biomass and enzymes.
Bisulfite pretreatment is a proven effective method for improving the enzymatic hydrolysis of empty fruit bunch (EFB) from oil palm for bioethanol production. In this study, we set out to determine the changes that occur in the structure and properties of EFB materials and fractions of hemicellulose and lignin during the bisulfite pretreatment process. The results showed that the crystallinity of cellulose in EFB increased after bisulfite pretreatment, whereas the EFB surface was damaged to various degrees. The orderly structure of EFB, which was maintained by hydrogen bonds, was destroyed by bisulfite pretreatment. Bisulfite pretreatment also hydrolyzed the glycosidic bonds of the xylan backbone of hemicellulose, thereby decreasing the molecular weight and shortening the xylan chains. The lignin fractions obtained from EFB and pretreated EFB were typically G-S lignin, and with low content of H units. Meanwhile, de-etherification occurred at the β-O-4 linkage, which was accompanied by polymerization and demethoxylation as a result of bisulfite pretreatment. The adsorption ability of cellulase differed for the various lignin fractions, and the water-soluble lignin fractions had higher adsorption capacity on cellulase than the milled wood lignin. In general, the changes in the structure and properties of EFB provided insight into the benefits of bisulfite pretreatment.
Background Trichoderma reesei is currently the main strain for the commercial production of cellulase. Cellulose induced protein 1 (Cip1) is one of the most abundant proteins in extracellular proteins of T. reesei. Reported literatures about Cip1 mainly focused on the regulation of Cip1 and its possible enzyme activities, but the effect of Cip1 on the enzymatic hydrolysis of lignocellulose and possible mechanism have not still been reported. Results In this study, Cip1 from T. reesei was cloned, expressed and purified, and its effects on enzymatic hydrolysis of several different pretreated lignocellulose were investigated. It was found that Cip1 could promote the enzymatic hydrolysis of pretreated lignocellulose, and the promoting effect was significantly better than that of bovine serum albumin (BSA). And especially for the lignocellulosic substrate with high lignin content such as liquid hot water pretreated corn stover and corncob residue, the promoting effect of Cip1 was even better than that of the commercial cellulase when adding equal amount protein. It was also showed that the metal ions Zn2+ and Cu2+ influenced the promoting effect on enzymatic hydrolysis. The Cip1 protein had no lyase activity, but it could destroy the crystal structure of cellulose and reduce the non-productive adsorption of cellulase on lignin, which partly interpreted the promoting effect of Cip1 on enzymatic hydrolysis of lignocellulose. Conclusion The Cip1 from T. reesei could significantly promote the enzymatic hydrolysis of pretreated lignocellulose, and the promotion of Cip1 was even higher than that of commercial cellulase in the enzymatic hydrolysis of the substrates with high lignin content. This study will help us to better optimize cellulase to improve its ability to degrade lignocellulose, thereby reducing the cost of enzymes required for enzymatic hydrolysis.
There is a rising interest in bioethanol production from lignocellulose such as corn stover to decrease the need for fossil fuels, but most research mainly focuses on how to improve ethanol yield and pays less attention to the biorefinery of corn stover. To realize the utilization of different components of corn stover in this study, different pretreatment strategies were used to fractionate corn stover while enhancing enzymatic digestibility and cellulosic ethanol production. It was found that the pretreatment process combining dilute acid (DA) and alkaline sodium sulfite (ASS) could effectively fractionate the three main components of corn stover, i.e., cellulose, hemicellulose, and lignin, that xylose recovery reached 93.0%, and that removal rate of lignin was 85.0%. After the joint pretreatment of DA and ASS, the conversion of cellulose at 72 h of enzymatic hydrolysis reached 85.4%, and ethanol concentration reached 48.5 g/L through fed-batch semi-simultaneous saccharification and fermentation (S-SSF) process when the final concentration of substrate was 18% (w/v). Pretreatment with ammonium sulfite resulted in 83.8% of lignin removal, and the conversion of cellulose and ethanol concentration reached 86.6% and 50 g/L after enzymatic hydrolysis of 72 h and fed-batch S-SSF, respectively. The results provided a reference for effectively separating hemicellulose and lignin from corn stover and producing cellulosic ethanol for the biorefinery of corn stover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.