In this paper, a thermomechanical coupled phase field method is developed to model cracks with frictional contact. Compared to discrete methods, the phase field method can represent arbitrary crack geometry without an explicit representation of the crack surface. The two distinguishable features of the proposed phase field method are: (1) for the mechanical phase, no specific algorithm is needed for imposing contact constraints on the fracture surfaces; (2) for the thermal phase, formulations are proposed for incorporating the phase field damage parameter so that different thermal conductance conditions are accommodated. While the stress is updated explicitly in the regularized interface regions under different contact conditions, the thermal conductivity is determined under different conductance conditions. In particular, we consider a pressure-dependent thermal conductance model (PDM) that is fully coupled with the mechanical phase, along with the other three thermal conductance models, i.e., the fully conductive model (FCM), the adiabatic model (ACM), and the uncoupled model (UCM). The potential of this formulation is showcased by several benchmark problems. We gain insights into the role of the temperature field affecting the mechanical field. Several 2D boundary value problems are addressed, demonstrating the model’s ability to capture cracking phenomena with the effect of the thermal field. We compare our results with the discrete methods as well as other phase field methods, and a very good agreement is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.