Hepatocellular carcinoma (HCC) is a malignant tumor with high mortality. The abnormal expression of genes is significantly related to the occurrence of HCC. The aim of this study was to explore the differentially expressed genes (DEGs) of HCC and to provide bioinformatics basis for the occurrence, prevention and treatment of HCC. The DEGs of HCC and normal tissues in GSE102079, GSE121248, GSE84402 and GSE60502 were obtained using R language. The GO function analysis and KEGG pathway enrichment analysis of DEGs were carried out using the DAVID database. Then, the protein–protein interaction (PPI) network was constructed using the STRING database. Hub genes were screened using Cytoscape software and verified using the GEPIA, UALCAN, and Oncomine database. We used HPA database to exhibit the differences in protein level of hub genes and used LinkedOmics to reveal the relationship between candidate genes and tumor clinical features. Finally, we obtained transcription factor (TF) of hub genes using NetworkAnalyst online tool. A total of 591 overlapping up-regulated genes were identified. These genes were related to cell cycle, DNA replication, pyrimidine metabolism, and p53 signaling pathway. Additionally, the GEPIA database showed that the CDK1, CCNB1, CDC20, BUB1, MAD2L1, MCM3, BUB1B, MCM2, and RFC4 were associated with the poor survival of HCC patients. UALCAN, Oncomine, and HPA databases and qRT-PCR confirmed that these genes were highly expressed in HCC tissues. LinkedOmics database indicated these genes were correlated with overall survival, pathologic stage, pathology T stage, race, and the age of onset. TF analysis showed that MYBL2, KDM5B, MYC, SOX2, and E2F4 were regulators to these nine hub genes. Overexpression of CDK1, CCNB1, CDC20, BUB1, MAD2L1, MCM3, BUB1B, MCM2, and RFC4 in tumor tissues predicted poor survival in HCC. They may be potential therapeutic targets for HCC.
Although immunotherapy has progressed in the treatment of bladder cancer, some patients still have poor prognosis. New therapeutic targets are eager to be discovered to improve the outcomes of bladder cancer. With the development of high-throughput sequencing and tumor profiling, potential tumor biomarkers were identified. Through the interpretation of related data from the Cancer Genome Atlas database (TCGA), some key genes have been discovered to drive the development and prognosis of urinary bladder neoplasm. On account of the success of immunotherapy in many cancer types, we established the relationship between tumor mutation burden and immune microenvironment of bladder cancer and found the changes of several immune cells in this disease. Based on the understanding of the bladder tumor genome and immune environment, this study is supposed to provide new therapies for the treatment of bladder neoplasm.
BackgroundThe incidence, prevalence, and mortality of ischemic stroke (IS) continue to rise, resulting in a serious global disease burden. The prediction models have a great value in the early prediction and diagnosis of IS.MethodsThe R software was used to screen the differentially expressed genes (DEGs) of IS and control samples in the datasets GSE16561, GSE58294, and GSE37587 and analyze DEGs for enrichment analysis. The feature genes of IS were obtained by several machine learning algorithms, including the least absolute shrinkage and selector operation (LASSO) logistic regression, the support vector machine-recursive feature elimination (SVM-RFE), and the Random Forest (RF). The IS diagnostic models were constructed based on transcriptomics by machine learning and artificial neural network (ANN).ResultsA total of 69 DEGs, mainly involved in immune and inflammatory responses, were identified. The pathways enriched in the IS group were complement and coagulation cascades, lysosome, PPAR signaling pathway, regulation of autophagy, and toll-like receptor signaling pathway. The feature genes selected by LASSO, SVM-RFE, and RF were 17, 10, and 12, respectively. The area under the curve (AUC) of the LASSO model in the training dataset, GSE22255, and GSE195442 was 0.969, 0.890, and 1.000. The AUC of the SVM-RFE model was 0.957, 0.805, and 1.000, respectively. The AUC of the RF model was 0.947, 0.935, and 1.000, respectively. The models have good sensitivity, specificity, and accuracy. The AUC of the LASSO+ANN, SVM-RFE+ANN, and RF+ANN models was 1.000, 0.995, and 0.997, respectively, in the training dataset. However, the AUC of LASSO+ANN, SVM-RFE+ANN, and RF+ANN models was 0.688, 0.605, and 0.619, respectively, in the GSE22255 dataset. The AUC of the LASSO+ANN and RF+ANN models was 0.740 and 0.630, respectively, in the GSE195442 dataset. In the training dataset, the sensitivity, specificity, and accuracy of the LASSO+ANN model were 1.000, 1.000, and 1.000, respectively; of the SVM-RFE+ANN model were 0.946, 0.982, and 0.964, respectively; and of the RF+ANN model were 0.964, 1.000, and 0.982, respectively. In the test datasets, the sensitivity was very satisfactory; however, the specificity and accuracy were not good.ConclusionThe LASSO, SVM-RFE, and RF models have good prediction abilities. However, the ANN model is efficient at classifying positive samples and is unsuitable at classifying negative samples.
Purpose To explore the pathogenesis of venous thromboembolism (VTE) and provide bioinformatics basis for the prevention and treatment of VTE. Methods The R software was used to obtain the gene expression profile data of GSE19151, combining with the CIBERSORT database, obtain immune cells and differentially expressed genes (DEGs) of blood samples of VTE patients and normal control, and analyze DEGs for GO analysis and KEGG pathway enrichment analysis. Then, the protein-protein interaction (PPI) network was constructed by using the STRING database, the key genes (hub genes) and immune differential genes were screened by Cytoscape software, and the transcription factors (TFs) regulating hub genes and immune differential genes were analyzed by the NetworkAnalyst database. Results Compared with the normal group, monocytes and resting mast cells were significantly expressed in the VTE group, while regulatory T cells were significantly lower. Ribosomes were closely related to the occurrence of VTE. 10 hub genes and immune differential genes were highly expressed in VTE. MYC, SOX2, XRN2, E2F1, SPI1, CREM and CREB1 can regulate the expressions of hub genes and immune differential genes. Conclusions Ribosomal protein family genes are most relevant to the occurrence and development of VTE, and the immune differential genes may be the key molecules of VTE, which provides new ideas for further explore the pathogenesis of VTE.
Background Hepatocellular carcinoma (HCC) has a high incidence and mortality worldwide, which seriously threatens people's physical and mental health. Coagulation is closely related to the occurrence and development of HCC. Whether coagulation-related genes (CRGs) can be used as prognostic markers for HCC remains to be investigated. Methods Firstly, we identified differentially expressed coagulation-related genes of HCC and control samples in the datasets GSE54236, GSE102079, TCGA-LIHC, and Genecards database. Then, univariate Cox regression analysis, LASSO regression analysis, and multivariate Cox regression analysis were used to determine the key CRGs and establish the coagulation-related risk score (CRRS) prognostic model in the TCGA-LIHC dataset. The predictive capability of the CRRS model was evaluated by Kaplan–Meier survival analysis and ROC analysis. External validation was performed in the ICGC-LIRI-JP dataset. Besides, combining risk score and age, gender, grade, and stage, a nomogram was constructed to quantify the survival probability. We further analyzed the correlation between risk score and functional enrichment, pathway, and tumor immune microenvironment. Results We identified 5 key CRGs (FLVCR1, CENPE, LCAT, CYP2C9, and NQO1) and constructed the CRRS prognostic model. The overall survival (OS) of the high-risk group was shorter than that of the low-risk group. The AUC values for 1 -, 3 -, and 5-year OS in the TCGA dataset were 0.769, 0.691, and 0.674, respectively. The Cox analysis showed that CRRS was an independent prognostic factor for HCC. A nomogram established with risk score, age, gender, grade, and stage, has a better prognostic value for HCC patients. In the high-risk group, CD4+T cells memory resting, NK cells activated, and B cells naive were significantly lower. The expression levels of immune checkpoint genes in the high-risk group were generally higher than that in the low-risk group. Conclusions The CRRS model has reliable predictive value for the prognosis of HCC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.