The combination of UHPLC-Q-TOF-MS, preparative HPLC and UHPLC-SPE-NMR-MS techniques is a quick and effective approach for finding new minor constitutes from herbs.
Plant secondary metabolism drives the generation of metabolites used for host plant resistance, as biopesticides and botanicals, even for the discovery of new therapeutics for human diseases. Flavonoids are one of the largest and most studied classes of specialized plant metabolites. To quickly identify the potential bioactive flavonoids in herbs, a metabolites software-assisted flavonoid hunting approach was developed, which mainly included three steps: firstly, utilizing commercial metabolite software, a flavonoids database was established based on the biosynthetic pathways; secondly, mass spectral data of components in herbs were acquired by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry (UHPLC-Q-TOF-MS); and finally, the acquired LC-MS data were imported into the database and the compounds in the herbs were automatically identified by comparison of their mass spectra with the theoretical values. As a case study, the flavonoids in Smilax glabra were profiled using this approach. As a result, 104 flavonoids including 27 potential new compounds were identified. To our knowledge, this is the first
OPEN ACCESSMolecules 2015, 20 3956 report on profiling the components in the plants utilizing the plant metabolic principles with the assistance of metabolites software. This approach can be extended to the analysis of flavonoids in other plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.