Bipolar spindle assembly is necessary to ensure the proper progression of cell division. Loss of spindle pole integrity leads to multipolar spindles and aberrant chromosomal segregation. However, the mechanism underlying the maintenance of spindle pole integrity remains unclear. In this study, we show that the actin‐binding protein adducin‐1 (ADD1) is phosphorylated at S726 during mitosis. S726‐phosphorylated ADD1 localizes to centrosomes, wherein it organizes into a rosette‐like structure at the pericentriolar material. ADD1 depletion causes centriole splitting and therefore results in multipolar spindles during mitosis, which can be restored by re‐expression of ADD1 and the phosphomimetic S726D mutant but not by the S726A mutant. Moreover, the phosphorylation of ADD1 at S726 is crucial for its interaction with TPX2, which is essential for spindle pole integrity. Together, our findings unveil a novel function of ADD1 in maintaining spindle pole integrity through its interaction with TPX2.
BackgroundThe adducin (ADD) family proteins, namely ADD1, ADD2, and ADD3, are actin-binding proteins that play important roles in the stabilization of membrane cytoskeleton and cell-cell junctions. All the ADD proteins contain a highly conserved bipartite nuclear localization signal (NLS) at the carboxyl termini, but only ADD1 can localize to the nucleus. The reason for this discrepancy is not clear.MethodsTo avoid the potential effect of cell-cell junctions on the distribution of ADD proteins, HA epitope-tagged ADD proteins and mutants were transiently expressed in NIH3T3 fibroblasts and their distribution in the cytoplasm and nucleus was examined by immunofluorescence staining. Several nuclear proteins were identified to interact with ADD1 by mass spectrometry, which were further verified by co-immunoprecipitation.ResultsIn this study, we found that ADD1 was detectable both in the cytoplasm and nucleus, whereas ADD2 and ADD3 were detected only in the cytoplasm. However, ADD2 and ADD3 were partially (~40%) sequestered in the nucleus by leptomycin B, a CRM1/exportin1 inhibitor. Upon the removal of leptomycin B, ADD2 and ADD3 re-distributed to the cytoplasm. These results indicate that ADD2 and ADD3 possess functional NLS and are quickly transported to the cytoplasm upon entering the nucleus. Indeed, we found that ADD2 and ADD3 possess much higher potential to counteract the activity of the NLS derived from Simian virus 40 large T-antigen than ADD1. All the ADD proteins appear to contain multiple nuclear export signals mainly in their head and neck domains. However, except for the leucine-rich motif (377FEALMRMLDWLGYRT391) in the neck domain of ADD1, no other classic nuclear export signal was identified in the ADD proteins. In addition, the nuclear retention of ADD1 facilitates its interaction with RNA polymerase II and zinc-finger protein 331.ConclusionsOur results suggest that ADD2 and ADD3 possess functional NLS and shuttle between the cytoplasm and nucleus. The discrepancy in the subcellular localization of the ADD isoforms arises due to their different nuclear export capabilities. In addition, the interaction of ADD1 with RNA polymerase II and zinc-finger protein 331 implicates a potential role for ADD1 in the regulation of transcription.
Exposure to indoor particulate matter less than 2.5 µm in diameter (PM2.5) is a critical health risk factor. Therefore, measuring indoor PM2.5 concentrations is important for assessing their health risks and further investigating the sources and influential factors. However, installing monitoring instruments to collect indoor PM2.5 data is difficult and expensive. Therefore, several indoor PM2.5 concentration prediction models have been developed. However, these prediction models only assess the daily average PM2.5 concentrations in cold or temperate regions. The factors that influence PM2.5 concentration differ according to climatic conditions. In this study, we developed a prediction model for hourly indoor PM2.5 concentrations in Taiwan (tropical and subtropical region) by using a multiple linear regression model and investigated the impact factor. The sample comprised 93 study cases (1979 measurements) and 25 potential predictor variables. Cross-validation was performed to assess performance. The prediction model explained 74% of the variation, and outdoor PM2.5 concentrations, the difference between indoor and outdoor CO2 levels, building type, building floor level, bed sheet cleaning, bed sheet replacement, and mosquito coil burning were included in the prediction model. Cross-validation explained 75% of variation on average. The results also confirm that the prediction model can be used to estimate indoor PM2.5 concentrations across seasons and areas. In summary, we developed a prediction model of hourly indoor PM2.5 concentrations and suggested that outdoor PM2.5 concentrations, ventilation, building characteristics, and human activities should be considered. Moreover, it is important to consider outdoor air quality while occupants open or close windows or doors for regulating ventilation rate and human activities changing also can reduce indoor PM2.5 concentrations.
A new concept of ion thrusters, metal ion thrusters using magnetron electron-beam bombardment (MIT-MEB) is demonstrated. Ion thrusters provide thrusts via electrostatic fields to accelerate ions. They are widely used in spacecrafts due to the high exhaust speed. Although the thrust is very little, the final velocity of the spacecraft is much higher than using traditional rockets. For propellant, inert gases are used in conventional ion thrusters. Contrarily, a metal propellant is used in MIT-MEB. The metal propellant is solid-state, high density, easy to store, and cheap. The size of the ion thrusters can be reduced dramatically. Therefore, they can be used in a small spacecraft for both attitude and orbit control, deep space exploration, and low earth orbit. The concept of electron-beam physical vapor deposition (EB-PVD) is used to generate metal ions. A metal target is bombarded and thus heated and evaporated. An electric potential accelerates thermal-emitted electrons, which ionize the metal vapor via electron-impacting ionization. The magnetic field of a permanent magnet is used to guide the accelerated electrons towards the center of the target. This increases the efficiency of the process. Particularly but not necessarily, zinc is used for propellant due to its higher vapor pressure compared with other metals at the same temperature. This means that a lower temperature is required for zinc to be vaporized. To demonstrate our concept, an ion thruster of 10.3±0.7 μ N with a power of 26.2±0.7 W was constructed as a prototype. Its mass is less than 500 g, and its diameter is ~50 mm. The accelerating electric potential is 1 kV. Although an optimized design was not developed yet, we demonstrated the feasibility of building metal ion thrusters for the first time. It is a new design space and unexplored method of using a metal propellant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.