Alcoholic fatty liver disease (AFLD) is characterized by lipid accumulation and inflammation and can progress to cirrhosis and cancer in the liver. AFLD diagnosis currently relies on histological analysis of liver biopsies. Early detection permits interventions that would prevent progression to cirrhosisor later stages of the disease. Herein, we have conducted the first comprehensive time-course study of lipids using novel state-of-the art lipidomics methods in plasma and liver in the early stages of a mouse model of AFLD, i.e., Lieber-DeCarli diet model. In ethanol-treated mice, changes in liver tissue included up-regulation of triglycerides (TGs) and oxidized TGs and down-regulation of phosphatidylcholine, lysophosphatidylcholine, and 20-22-carbon-containing lipid-mediator precursors. An increase in oxidized TGs preceded histological signs of early AFLD, i.e., steatosis, with these changes observed in both the liver and plasma. The major lipid classes dysregulated by ethanol play important roles in hepatic inflammation, steatosis, and oxidative damage. Conclusion: Alcohol consumption alters the liver lipidome before overt histological markers of early AFLD. This introduces the exciting possibility that specific lipids may serve as earlier biomarkers of AFLD than those currently being used. (Hepatology Communications 2022;6:513-525).F atty liver disease or hepatosteatosis occurs when lipids accumulate in the liver as a result of dysregulated lipid metabolism leading to increased lipogenesis, reduced lipolysis, and lipotoxicity. (1) Lipotoxicity may potentially elicit an inflammatory response that can lead to the progression to cirrhosis and hepatocellular carcinoma. Clinically, fatty liver disease can be divided into alcoholic (AFLD) and nonalcoholic fatty liver disease (NAFLD). Both AFLD and NAFLD are generally indistinguishable using only morphological evidence, other than the distinctions applied by these etiological designations. (2) Although the prevalence of NAFLD worldwide compared to AFLD has been increasing exponentially
Background Intraductal papillary mucinous neoplasms (IPMNs), a type of cystic pancreatic cancer (PC) precursors, are increasingly identified on cross-sectional imaging and present a significant diagnostic challenge. While surgical resection of IPMN-related advanced neoplasia, i.e., IPMN-related high-grade dysplasia or PC, is an essential early PC detection strategy, resection is not recommended for IPMN-low-grade dysplasia (LGD) due to minimal risk of carcinogenesis, and significant procedural risks. Based on their promising results in prior validation studies targeting early detection of classical PC, DNA hypermethylation-based markers may serve as a biomarker for malignant risk stratification of IPMNs. This study investigates our DNA methylation-based PC biomarker panel (ADAMTS1, BNC1, and CACNA1G genes) in differentiating IPMN-advanced neoplasia from IPMN-LGDs. Methods Our previously described genome-wide pharmaco-epigenetic method identified multiple genes as potential targets for PC detection. The combination was further optimized and validated for early detection of classical PC in previous case–control studies. These promising genes were evaluated among micro-dissected IPMN tissue (IPMN-LGD: 35, IPMN-advanced neoplasia: 35) through Methylation-Specific PCR. The discriminant capacity of individual and combination of genes were delineated through Receiver Operating Characteristics curve analysis. Results As compared to IPMN-LGDs, IPMN-advanced neoplasia had higher hypermethylation frequency of candidate genes: ADAMTS1 (60% vs. 14%), BNC1 (66% vs. 3%), and CACGNA1G (25% vs. 0%). We observed Area Under Curve (AUC) values of 0.73 for ADAMTS1, 0.81 for BNC1, and 0.63 for CACNA1G genes. The combination of the BNC1/ CACNA1G genes resulted in an AUC of 0.84, sensitivity of 71%, and specificity of 97%. Combining the methylation status of the BNC1/CACNA1G genes, blood-based CA19-9, and IPMN lesion size enhanced the AUC to 0.92. Conclusion DNA-methylation based biomarkers have shown a high diagnostic specificity and moderate sensitivity for differentiating IPMN-advanced neoplasia from LGDs. Addition of specific methylation targets can improve the accuracy of the methylation biomarker panel and enable the development of noninvasive IPMN stratification biomarkers.
Purpose of reviewThe increasing global incidence of cancer demands innovative cancer detection modalities. The current population-based early cancer detection approaches focus on several major types of cancers (breast, prostate, cervical, lung and colon) at their early stages, however, they generally do not target high-risk individuals at precancerous stages. Recent findingsSome cancers, such as pancreatic cancer, are challenging to detect in their early stages. Therefore, there is a pressing need for improved, accessible, noninvasive, and cost-effective early detection methods. Harnessing cell-free-based biomarker-driven strategies paves a new era of precision diagnosis for multicancer early detection. The majority of these tests are in the early stages and expensive, but these approaches are expected to become cost sensitive in the near future. SummaryThis review provides an overview of early cancer detection strategies, highlighting the methods, challenges, and issues to be addressed to revolutionize and improve global early cancer detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.