SummaryThe overuse of veterinary antibiotics in animal production and the subsequent land applications of manures contribute to the elevated antibiotic resistance in the soil environment. To minimize the risk of antibiotic resistance, it is important to understand the fate of antibiotics and the spread of antibiotic resistance genes (ARGs) from animal production systems to soil. In this paper, we review recent studies on veterinary antibiotic use, the concentrations of antibiotics and the abundance and diversity of AGRs in animal manures and in soil that receives manures or manure composts. The mechanisms of ARG dissemination in the environment are also discussed. Although we focus on China where around 3 billion tons of animal manures are produced and more than 84 000 tons of antibiotics are consumed annually in animal production industries, the problem is worldwide. Approximately 58% of the veterinary antibiotics consumed are excreted into the environment, more than half of which end up in the soil. The abundance of ARGs in manures can reach up to 10 −1 of the 16S rRNA genes. Applications of manures or manure composts can enrich soil ARGs in at least three ways: (i) by the direct introduction of manure-derived ARGs, (ii) by elevating the intrinsic soil ARGs and (iii) by imposing a selection of ARGs with the antibiotics in the manures. We also discuss the need for more stringent regulations on the use of veterinary antibiotics and future research directions on the mechanisms of antibiotic resistance and resistance management.
Microbial arsenic (As) methylation and demethylation are important components of the As biogeochemical cycle. Arsenic methylation is enhanced under flooded conditions in paddy soils, producing mainly phytotoxic dimethylarsenate (DMAs) that can cause rice straighthead disease, a physiological disorder occurring widely in some rice growing regions. The key microbial groups responsible for As methylation and demethylation in paddy soils are unknown. Three paddy soils were incubated under flooded conditions. DMAs initially accumulated in the soil porewater, followed by a rapid disappearance coinciding with the production of methane. The soil from a rice straighthead disease paddy field produced a much larger amount of DMAs than the other two soils. Using metabolic inhibition, quantification of functional gene transcripts, microbial enrichment cultures and 13C-labeled DMAs, we show that sulfate-reducing bacteria (SRB) and methanogenic archaea are involved in As methylation and demethylation, respectively, controlling the dynamics of DMAs in paddy soils. We present a model of As biogeochemical cycle in paddy soils, linking the dynamics of changing soil redox potential with arsenite mobilization, arsenite methylation and subsequent demethylation driven by different microbial groups. The model provides a basis for controlling DMAs accumulation and incidence of straighthead disease in rice.
Cancer immunotherapy has primarily been focused on attacking tumor cells. However, given the close interaction between tumor cells and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME), CAF-targeted strategies could also contribute to an integrated cancer immunotherapy. Fibroblast activation protein α (FAP α) is not detectible in normal tissues, but is overexpressed by CAFs and is the predominant component of the stroma in most types of cancer. FAP α has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. When all FAP α-expressing cells (stromal and cancerous) are destroyed, tumors rapidly die. Furthermore, a FAP α antibody, FAP α vaccine, and modified vaccine all inhibit tumor growth and prolong survival in mouse models, suggesting FAP α is an adaptive tumor-associated antigen. This review highlights the role of FAP α in tumor development, explores the relationship between FAP α and immune suppression in the TME, and discusses FAP α as a potential immunotherapeutic target.
Rationale:Abdominal cocoon is a condition in which intestinal obstruction results from the encasement of part or whole of the small bowel by a thick fibrous membrane, giving the appearance of a cocoon. The preoperative diagnosis is difficult to be made and the treatment is still controversial.Patient concerns:Here we describe the case of a 62-year-old male presented with a 24-h history of continual colicky abdominal pain, which was accompanied with nausea and vomiting.Diagnosis:Accurate diagnosis of abdominal cocoon was made intraoperatively.Interventions:Membrane excision and adhesiolysis were performed and the patient experienced early postoperative small bowel obstruction. Nasointestinal obstruction tube was then installed and bowel function was gradually recovered by the 20th postoperative day.Outcomes:The patient recovered well and was discharged from the hospital on the 30th postoperative dayLessons:Abdominal cocoon can occur at any age. The possibility of abdominal cocoon should also be considered in infertile patients. Imaging studies may be helpful to make the correct diagnosis, and surgery should be performed for patients with recurrent acute or chronic intestinal obstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.