Protein arginine methylation regulates a broad array of cellular processes. SERBP1 implicated in tumor progression through its putative involvement in the plaminogen activator protease cascade, is an RNA-binding protein containing an RG-rich domain and an RGG box domain that might be methylated by protein arginine N-methyltransferases (PRMTs). Asymmetric dimethylarginine (aDMA) was detected in SERBP1 and an indirect methyltransferase inhibitor adenosine dialdehyde (AdOx) significantly reduced the methylation signals. Arginines in the middle RG and C-terminal RGG region of SERBP1 are methylated based on the analyses of different deletion constructs. The predominant type I protein arginine methyltransferase PRMT1 co-immunoprecipitated with SERBP1 and the level of bound PRMT1 decreased upon the addition of AdOx. Recombinant PRMT1 methylated SERBP1 and knockdown of PRMT1 significantly reduced the aDMA level of SERBP1, indicating that SERBP1 is specifically methylated by PRMT1. Immunofluorescent analyses of endogenous SERBP1 showed predominant cytoplasmic localization of SERBP1. Treatment of AdOx or PRMT1 siRNA increased the nuclear localization of SERBP1. Analyses of different deletions indicated that the middle RG region is important for the nuclear localization while both N- and C- terminus are required for nuclear export. Low methylation of the C-terminal RGG region also favors nuclear localization. In conclusion, the RG-rich and RGG box of SERBP1 is asymmetrically dimethylated by PRMT1 and the modification affects protein interaction and intracellular localization of the protein. These findings provide the basis for dissecting the roles of SERBP1.
Background: It has previously been shown that bevacizumab, when added to chemotherapy, improved overall survival in several cancers. In glioblastoma multiforme (GBM), bevacizumab increased progression-free survival and it is widely used for tumor recurrence, though it has failed to improve overall survival (OS) in controlled trials. However, an effective biomarker for predicting the prognosis of bevacizumab treatment has yet to be identified. This study, therefore, aimed to retrospectively analyze the polymorphisms of p53 codon 72 and the clinical characteristics of GBM specimens from Taiwanese patients. Methods: The polymorphisms of p53 codon 72 in 99 patients with GBM treated at Taichung Veterans General Hospital in Taiwan from 2007 to 2017 were analyzed using direct DNA sequencing and PCR-RFLP analysis. Results: We found that among these GBM patients, the distribution of codon 72 polymorphisms was 28.3% for proline homozygotes (Pro/Pro), 38.4% for arginine homozygotes (Arg/Arg), and 33.3% for proline/arginine heterozygotes (Pro/Arg). Although the polymorphisms of p53 codon 72 were not directly associated with the overall survival of GBM, both the Arg/Arg and Arg/Pro genotypes were associated with significant benefits in terms of overall survival in patients treated with CCRT plus bevacizumab compared to patients treated with CCRT alone. Conclusions: This pilot study suggests that both the Arg/Arg and Arg/Pro genotypes of p53 codon 72 polymorphism may have value as independent prognostic or predictive parameters for bevacizumab treatment response and failure. Relatedly, the results of the study further demonstrate the utility of stratifying GBM patients according to bevacizumab sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.