Motivation
In the process of discovery and optimization of lead compounds, it is difficult for non-expert pharmacologists to intuitively determine the contribution of substructure to a particular property of a molecule.
Results
In this work, we develop a user-friendly web service, named interpretable-absorption, distribution, metabolism, excretion and toxicity (ADMET), which predict 59 ADMET-associated properties using 90 qualitative classification models and 28 quantitative regression models based on graph convolutional neural network and graph attention network algorithms. In interpretable-ADMET, there are 250 729 entries associated with 59 kinds of ADMET-associated properties for 80 167 chemical compounds. In addition to making predictions, interpretable-ADMET provides interpretation models based on gradient-weighted class activation map for identifying the substructure, which is important to the particular property. Interpretable-ADMET also provides an optimize module to automatically generate a set of novel virtual candidates based on matched molecular pair rules. We believe that interpretable-ADMET could serve as a useful tool for lead optimization in drug discovery.
Availability and implementation
Interpretable-ADMET is available at http://cadd.pharmacy.nankai.edu.cn/interpretableadmet/.
Supplementary information
Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.