[1] Flood estimation for ungauged catchments is a challenging task for hydrologists. A modern geographical information system is able to extract a large number of catchment characteristics as input variables for regionalization analysis. Effective and efficient selection of the best input variables is urgently needed in this field. This paper explores a new methodology for selecting the best input variable combination on the basis of the gamma test and leave-one-out cross validation (LOOCV) to estimate the median annual maximum flow (as an index flood). Since the gamma test is capable of efficiently calculating the output variance on the basis of the input without the need to select a model structure type, more effective regionalization models could be developed because there is no need to define an a priori model structure. A case study from 20 catchments in southwest England has been used to illustrate and validate the proposed scheme. It has been found that the gamma test is able to narrow down the search options to be further explored by the LOOCV. The best formula from this approach outperforms the conventional approaches based on cross validation, data filtering with Spearman's rank correlation matrix, and corrected Akaike information criterion. In addition, the developed formula is significantly more accurate than the existing equation used in the Flood Estimation Handbook.
Multi-walled carbon nanotubes (CNTs) functionalized with a deep eutectic solvent (DES) were utilized to remove mercury ions from water. An artificial neural network (ANN) technique was used for modelling the functionalized CNTs adsorption capacity. The amount of adsorbent dosage, contact time, mercury ions concentration and pH were varied, and the effect of parameters on the functionalized CNT adsorption capacity is observed. The (NARX) network, (FFNN) network and layer recurrent (LR) neural network were used. The model performance was compared using different indicators, including the root mean square error (RMSE), relative root mean square error (RRMSE), mean absolute percentage error (MAPE), mean square error (MSE), correlation coefficient (R2) and relative error (RE). Three kinetic models were applied to the experimental and predicted data; the pseudo second-order model was the best at describing the data. The maximum RE, R2 and MSE were 9.79%, 0.9701 and 1.15 × 10−3, respectively, for the NARX model; 15.02%, 0.9304 and 2.2 × 10−3 for the LR model; and 16.4%, 0.9313 and 2.27 × 10−3 for the FFNN model. The NARX model accurately predicted the adsorption capacity with better performance than the FFNN and LR models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.