This article is focused on hybrid method for solving the non-smooth cost function economic dispatch problem. The techniques were divided into two parts according to: the incremental cost rates are used to find the initial solution and bee colony optimization is used to find the optimal solution. The constraints of economic dispatch are power losses, load demand and practical operation constraints of generators. To verify the performance of the proposed algorithm, it is operated by the simulation on the MATLAB program and tests three case studies; three, six and thirteen generator units which compared to particle swarm optimization, cuckoo search algorithm, bat algorithm, firefly algorithm and bee colony optimization. The results show that the proposed algorithm is able to obtain higher quality solution efficiently than the others methods.
This paper proposes a harmonic reduction approach for a pulse width modulation (PWM) AC-AC converters using Bee Colony Optimization (BCO). The optimal switching angles are provided by BCO to minimize harmonic distortions. The sequences of the PWM switching angles are considered as a technical constraint. In this paper, simulation results from various optimization techniques including BCO, Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) are compared. The test results indicate that BCO can provide a better solution than the others in terms of power quality and power factor improvement. Lastly, experiments on a 200W AC-AC converter confirm the performance of the proposed switching pattern in reducing harmonic distortions of the output waveform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.