Designed for retaining suspended particles, rapid sand filters (RSFs) are widely used in drinking water treatment. There is increasing evidence that microbial processes within RSFs contribute to the transformation and removal of organic carbon, nitrogen, and metal pollutants. Here, we linked microbial composition and functional profiles with the treatment performance of 12 different RSFs that significantly removed influent ammonium and manganese (Mn). Metagenomic analyses showed that chemoautotrophic or methanotrophic bacteria were prevalent in the groundwater filters, and chemoheterotrophic bacteria encoding more carbohydrate-and xenobiotic-metabolizing genes were more abundant in the surface water filters. Approximately 92% of ammonium was transformed into nitrate, with a critical contribution from comammox Nitrospira. The composition of comammox amoA differed between groundwater and surface water filters, with clade A dominating groundwater filters (78.0 ± 12.0%) and clade B dominating surface water filters (91.9 ± 8.9%). Further, we identified six bacterial genera encoding known Mn(II)-oxidizing genes in the RSFs, with Pseudomonas accounting for 71.1%. These Mn(II)-oxidizing bacteria might promote Mn(II) oxidation and thus increase the removal of influent Mn. Overall, our study gave a comprehensive investigation of microbiome in RSFs and highlighted the roles of comammox and Mn(II)-oxidizing bacteria in water purification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.