The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system consists of interactions of four planar elementary waves. Different from polytropic gas, all of them are contact discontinuities due to the system is full linear degenerate, i.e., the three eigenvalues of the system are linear degenerate. They include compressive one (S ± ), rarefactive one (R ± ) and slip lines (J ± ). We still call S ± as shock and R ± as rarefaction wave.In this paper, we study the problem systematically. According to different combination of four elementary waves, we deliver a complete classification to the problem. It contains 14 cases in all. The Riemann solutions are self-similar, and the flow is transonic in self-similar plane (x/t, y/t). The boundaries of the interaction domains are obtained. Solutions in supersonic domains are constructed in no J cases. While in the rest cases, the structure of solutions are conjectured except for the case 2J + + 2J − . Especially, delta waves and simple waves appear in some cases. The Dirichlet boundary value problems in subsonic domains or the boundary value problems for transonic flow are formed case by case. The domains are convex for two cases, and non-convex for the rest cases. The boundaries of the domains are composed of sonic curves and/or slip lines.
Keywords:Relativistic Euler equations in special relativity Pressureless relativistic Euler equations Delta shock waves Vacuum Vanishing pressure limits The Riemann solutions for the Euler system of conservation laws of energy and momentum in special relativity for polytropic gases are considered. It is rigorously proved that, as pressure vanishes, they tend to the two kinds of Riemann solutions to the corresponding pressureless relativistic Euler equations: the one includes a delta shock, which is formed by a weighted δ-measure, and the other involves vacuum state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.