This article proposes frequency response function approximation method to identify mechanical parameters of fiber-reinforced composites. First, a fiber-reinforced composite thin plate is taken as a research object, and its natural characteristic and vibration response under pulse excitation are solved based on the Ritz method and mode superposition method, so that the theoretical calculation of frequency response function of such composite plates can be realized. Then, the identification principle based on frequency response function approximation method is illustrated and its correctness is validated by comparing with other published literature in the verification example, and the specific identification procedure is also proposed. Finally, frequency response function approximation method is applied in a study case, where the elastic moduli, Poisson’s ratios, and loss factors of the TC300 carbon/epoxy composite thin plate are identified, and the influences of boundary conditions, approximation points, total number of modes, and calculation step size on the identification accuracy and efficiency are discussed. It has been proved that the proposed method can identify mechanical parameters of fiber composite materials with high precision and efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.