ObjectiveWhen regaining consciousness, patients who emerge from a minimally conscious state (EMCS) present with different levels of functional disability, which pose great challenges for treatment. This study investigated the frontoparietal activity in EMCS patients and its effects on functional disability.Materials and methodsIn this preliminary study, 12 EMCS patients and 12 healthy controls were recruited. We recorded a resting-state scalp electroencephalogram (EEG) for at least 5 min for each participant. Each patient was assessed using the disability rating scale (DRS) to determine the level of functional disability. We analyzed the EEG power spectral density and sensor-level functional connectivity in relation to the patient’s functional disability.ResultsIn the frontoparietal region, EMCS patients demonstrated lower relative beta power (P < 0.01) and higher weighted phase lag index (wPLI) values in the theta (P < 0.01) and gamma (P < 0.01) bands than healthy controls. The frontoparietal theta wPLI values of EMCS patients were positively correlated with the DRS scores (rs = 0.629, P = 0.029). At the whole-brain level, EMCS patients only had higher wPLI values in the theta band (P < 0.01) than healthy controls. The whole-brain theta wPLI values of EMCS patients were also positively correlated with the DRS scores (rs = 0.650, P = 0.022). No significant difference in the power and connectivity between the frontoparietal region and the whole brain in EMCS patients was observed.ConclusionEMCS patients still experience neural dysfunction, especially in the frontoparietal region. However, the theta connectivity in the frontoparietal region did not increase specifically. At the level of the whole brain, the same shift could also be seen. Theta functional connectivity in the whole brain may underlie different levels of functional disability.
BackgroundRecent studies have shown that patients with disorders of consciousness (DoC) can benefit from repetitive transcranial magnetic stimulation (rTMS) therapy. The posterior parietal cortex (PPC) is becoming increasingly important in neuroscience research and clinical treatment for DoC as it plays a crucial role in the formation of human consciousness. However, the effect of rTMS on the PPC in improving consciousness recovery remains to be studied.MethodWe conducted a crossover, randomized, double-blind, sham-controlled clinical study to assess the efficacy and safety of 10 Hz rTMS over the left PPC in unresponsive patients. Twenty patients with unresponsive wakefulness syndrome were recruited. The participants were randomly divided into two groups: one group received active rTMS treatment for 10 consecutive days (n = 10) and the other group received sham treatment for the same period (n = 10). After a 10-day washout period, the groups crossed over and received the opposite treatment. The rTMS protocol involved the delivery of 2000 pulses/day at a frequency of 10 Hz, targeting the left PPC (P3 electrode sites) at 90% of the resting motor threshold. The primary outcome measure was the JFK Coma Recovery Scele-Revised (CRS-R), and evaluations were conducted blindly. EEG power spectrum assessments were also conducted simultaneously before and after each stage of the intervention.ResultrTMS-active treatment resulted in a significant improvement in the CRS-R total score (F = 8.443, p = 0.009) and the relative alpha power (F = 11.166, p = 0.004) compared to sham treatment. Furthermore, 8 out of 20 patients classified as rTMS responders showed improvement and evolved to a minimally conscious state (MCS) as a result of active rTMS. The relative alpha power also significantly improved in responders (F = 26.372, p = 0.002) but not in non-responders (F = 0.704, p = 0.421). No adverse effects related to rTMS were reported in the study.ConclusionsThis study suggests that 10 Hz rTMS over the left PPC can significantly improve functional recovery in unresponsive patients with DoC, with no reported side effects.Clinical trial registrationwww.ClinicalTrials.gov, identifier: NCT05187000.
Background Repetitive transcranial magnetic stimulation (rTMS), as a non-invasive brain stimulation technique, has shown potentials for consciousness recovery of patients with disorders of consciousness (DoC), as, to a certain extent, it is effective in regulating the excitability of central nervous system. However, it is difficult to achieve satisfactory effect with “one size fits all” rTMS treatment due to different clinical conditions of patients. There is an urgent need to develop individualized strategy to improve the effectiveness of rTMS on patients with DoC. Methods Our protocol is a randomized double-blind sham-controlled crossover trial that includes 30 DoC patients. Each patient will received 20 sessions, in which 10 sessions will be rTMS-active stimulus, and the other 10 sessions will be sham stimulus, separated by no less than 10 days’ washout period. The rTMS-active will include 10 Hz rTMS over the individualized-targeted selection area for each patient according to the different insult regions of the brain. Coma Recovery Scale-Revised (CRS-R) will be used as primary outcome at baseline, after the first stage of stimulation, at the end of the washout period, and after the second stage of stimulation. Secondary outcomes will be measured at the same time, including efficiency, relative spectral power, and functional connectivity of high-density electroencephalograph (EEG). Adverse events will be recorded during the study. Discussion rTMS has obtained grade A evidence in treating patients with several central nervous system diseases, and there has been some evidence showing partial improvement on level of consciousness in DoC patients. However, the effectiveness of rTMS in DoC is only 30~36%, mostly due to the non-specific target selection. In this protocol, we present a double-blind crossover randomized sham-controlled trial based on the individualized-targeted selection strategy that aims to study the effectiveness of rTMS therapy for DoC, and the result may provide new insights to non-invasive brain stimulation. Trial registration ClinicalTrials.gov: NCT05187000. Registered on January 10, 2022.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.