Rats have been widely used in the study of skin wound healing and the efficacy of different treatment modalities. This particular animal species is often selected for its availability, low cost, and small size. To define the current use of rat skin wound healing models, this manuscript provides a review of articles published between 2000 and 2003 that chose rats as their research animals. Of the 55 articles reviewed, it was found that 38.2% of the studies used incisional models and 38.2% used excisional models, with some studies using combinations. The majority of the studies (78.2%) used the rat's dorsum as the wound location. Male Sprague Dawley in the 250-300 gram weight range were the most preferred rats. Sodium pentobarbital/ pentobarbitone was the most commonly used anesthetic choice. Similarities and differences in the selected experimental conditions are noted and questions are raised with regard to comparability between studies and the ability to transfer the data from the animal model to the human clinical situation. Attempts to compare studies for the advancement of wound healing knowledge are being hampered by the differences found between the studies. Standardization in reporting could facilitate comparisons and may instigate additional research that favors the inevitable comparisons between the studies. Thus, universal reporting requirements need to be developed for animal wound healing studies. (WOUND REP REG 2004;12:591-599)
This study evaluated the effect of exogenous vascular endothelial growth factor (VEGF) on tendon healing and regulation of other growth factors in a rat Achilles tendon model. Fifty Sprague-Dawley rats were used. In the experimental group, the left Achilles tendon was transected and repaired with the modified Kessler suture technique, and the right Achilles tendon was transected and repaired with resection of plantaris tendon. VEGF, 100 mul (50 mug/ml), was injected into each tendon at the repair site. The same surgical procedures were performed in the control group, with the same volume of saline injected into the repair sites. At intervals of 1, 2, and 4 weeks, the animals were killed and the tendons were harvested and evaluated for tensile strength (1, 2, and 4 weeks) and gene expression (postoperative day 4). At 1 week postoperatively, when plantaris tendon was preserved, the tensile strength of the repaired tendons with VEGF treatment (3.63 +/- 0.62 MPa) was significantly higher than the tensile strength of the repaired tendons with saline treatment (2.20 +/- 0.36 MPa). There was no difference in tensile strength between the two groups without the plantaris tendon support. At 2 weeks postoperatively, the tensile strength was 11.34 +/- 3.89 MPa in the group with VEGF treatment and plantaris tendon preservation, which was significantly higher than the tensile strength in the other groups. There was no significant difference in tensile strength among the groups at 4 weeks postoperatively. The gene expression showed that transforming growth factor-beta in the VEGF-treated tendon was up-regulated in the early stage of tendon healing, whereas expression of platelet-derived growth factor, basic fibroblast growth factor, and insulin-like growth factor-1 was not significantly different among the groups. In conclusion, administration of exogenous VEGF can significantly improve tensile strength early in the course of the rat Achilles tendon healing and was associated with increased expression of transforming growth factor-beta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.